High-Efficiency Genome Editing and Allele Replacement in Prototrophic and Wild Strains of Saccharomyces

被引:25
作者
Alexander, William G. [1 ,2 ]
Doering, Drew T. [1 ,3 ]
Hittinger, Chris Todd [1 ,2 ,3 ]
机构
[1] Univ Wisconsin, Wisconsin Energy Inst, Genet Lab, Genome Ctr Wisconsin,JF Crow Inst Study Evolut, Madison, WI 53706 USA
[2] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA
[3] Univ Wisconsin, Grad Program Cellular & Mol Biol, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
SITE-DIRECTED MUTAGENESIS; VIRUS THYMIDINE KINASE; DOUBLE-STRAND BREAKS; NEUROSPORA-CRASSA; BUDDING YEAST; IN-VIVO; DEOXYRIBONUCLEIC ACID; GENE DISRUPTION; HOST STRAINS; CEREVISIAE;
D O I
10.1534/genetics.114.170118
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the Haploid Engineering and Replacement Protocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus.
引用
收藏
页码:859 / +
页数:24
相关论文
共 61 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Deep mutational scanning: assessing protein function on a massive scale [J].
Araya, Carlos L. ;
Fowler, Douglas M. .
TRENDS IN BIOTECHNOLOGY, 2011, 29 (09) :435-442
[3]   An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast [J].
Bellí, G ;
Garí, E ;
Piedrafita, L ;
Aldea, N ;
Herrero, E .
NUCLEIC ACIDS RESEARCH, 1998, 26 (04) :942-947
[4]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[5]   Yeast: An Experimental Organism for 21st Century Biology [J].
Botstein, David ;
Fink, Gerald R. .
GENETICS, 2011, 189 (03) :695-704
[6]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755
[7]  
CHOULIKA A, 1995, MOL CELL BIOL, V15, P1968
[8]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[9]   CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity [J].
Cradick, Thomas J. ;
Fine, Eli J. ;
Antico, Christopher J. ;
Bao, Gang .
NUCLEIC ACIDS RESEARCH, 2013, 41 (20) :9584-9592
[10]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343