Robust Finite-Time H∞ Control of a Class of Disturbed Systems using Lmi-Based Approach

被引:10
作者
Zhang, Xiaoyu [1 ]
Zhong, Jihong [1 ]
Zhang, Quan [1 ]
Ma, Kemao [1 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Finite-time boundedness; H control; robust control; linear matrix inequalities (lmis); uncertain systems; STOCHASTIC NONLINEAR-SYSTEMS; LINEAR-SYSTEMS; OUTPUT-FEEDBACK; FUZZY CONTROL; SUFFICIENT CONDITIONS; DELAY SYSTEMS; STABILITY; STABILIZATION; SUBJECT; DESIGN;
D O I
10.1002/asjc.1381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the definition of robust finite-time H control is presented for a class of disturbed systems. Time-varying norm-bounded exogenous disturbance is considered in the system. A state feedback controller is designed, via a Linear Matrix Inequalities (LMIs) approach, which ensures that the closed-loop system is finite-time bounded (FTB) and reduces the effect of the disturbance input on the controlled output to a prescribed level. The main result, derived by Lyapunov functions, is a sufficient condition for FTB of disturbed systems and the sufficient condition can be reduced to a feasibility problem involving LMIs. Then a DC motor position control problem is simulated as a demonstration for this study. Simulation results are presented to show the effectiveness of the proposed method as a promising approach for controlling similar disturbed systems.
引用
收藏
页码:575 / 586
页数:12
相关论文
共 31 条
[1]   Finite-time stabilization via dynamic output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
AUTOMATICA, 2006, 42 (02) :337-342
[2]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[3]   Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
AUTOMATICA, 2013, 49 (08) :2546-2550
[4]   Finite-time stabilization of impulsive dynamical linear systems [J].
Amato, F. ;
Ambrosino, R. ;
Cosentino, C. ;
De Tommasi, G. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2011, 5 (01) :89-101
[5]   Input-output finite time stabilization of linear systems [J].
Amato, F. ;
Ambrosino, R. ;
Cosentino, C. ;
De Tommasi, G. .
AUTOMATICA, 2010, 46 (09) :1558-1562
[6]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[7]   Input-Output Finite-Time Stability of Linear Systems: Necessary and Sufficient Conditions [J].
Amato, Francesco ;
Carannante, Giuseppe ;
De Tommasi, Gianmaria ;
Pironti, Alfredo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (12) :3051-3063
[8]   Finite-time stability of linear time-varying systems with jumps [J].
Amato, Francesco ;
Ambrosino, Roberto ;
Ariola, Marco ;
Cosentino, Carlo .
AUTOMATICA, 2009, 45 (05) :1354-1358
[9]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[10]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766