A posteriori analysis of a space and time discretization of a nonlinear model for the flow in partially saturated porous media

被引:10
作者
Bernardi, Christine [1 ,2 ]
El Alaoui, Linda [3 ]
Mghazli, Zoubida [4 ]
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris 05, France
[3] Univ Paris 13, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France
[4] Univ Ibn Tofail, Fac Sci, Equipe Ingn Math EIMA LIRNE, Kenitra, Morocco
关键词
Richards equation; space and time discretization; a posteriori analysis; FINITE-ELEMENT-METHOD; DEGENERATE PARABOLIC PROBLEMS; ERROR ESTIMATION; RICHARDS EQUATION; PRIORI; ORDER; APPROXIMATION; SIMULATION; ADAPTIVITY; DISCRETE;
D O I
10.1093/imanum/drt014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the equation due to Richards which models the water flow in a partially saturated underground porous medium under the surface. We propose a discretization of this equation by an implicit Euler scheme in time and mixed finite elements in space. We perform a posteriori analysis of this discretization, in order to improve its efficiency via time-step and mesh adaptivity. Some numerical experiments confirm the interest of this approach.
引用
收藏
页码:1002 / 1036
页数:35
相关论文
共 47 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
[Anonymous], 1977, MATH ASPECTS FINITE
[3]  
Babuska I, 2001, NUMER MATH, V89, P225, DOI 10.1007/s002110100228
[4]  
Bear J., 1972, Dynamics of Fluids in Porous Media
[5]  
Bergam A, 2005, MATH COMPUT, V74, P1117, DOI 10.1090/S0025-5718-04-01697-7
[6]   Time and space adaptivity for the second-order wave equation [J].
Bernardi, C ;
Süli, E .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (02) :199-225
[7]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .2. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE APPROACH [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :373-406
[8]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .1. A POSTERIORI ERROR ESTIMATION [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :339-371
[9]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587
[10]   A GENERAL MASS-CONSERVATIVE NUMERICAL-SOLUTION FOR THE UNSATURATED FLOW EQUATION [J].
CELIA, MA ;
BOULOUTAS, ET ;
ZARBA, RL .
WATER RESOURCES RESEARCH, 1990, 26 (07) :1483-1496