The thermal transport properties of single-crystalline nanowires covered with amorphous shell: A molecular dynamics study

被引:16
作者
Gao, Yufei [1 ]
Bao, Wenbo [1 ]
Meng, Qingyuan [2 ]
Jing, Yuhang [2 ]
Song, Xiaoxu [3 ]
机构
[1] Shenyang Univ Technol, Sch Architecture & Civil Engn, Shenyang 110870, Peoples R China
[2] Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Peoples R China
[3] Shenyang Univ Technol, Grad Sch, Shenyang 110870, Peoples R China
基金
美国国家科学基金会;
关键词
Si/a-Si core-shell NWs; C/a-Si core-shell NWs; Thermal transport properties; Diffusion properties; Molecular dynamics; SILICON NANOWIRES; MECHANICAL-PROPERTIES; CORE/SHELL NANOWIRES; CONDUCTIVITY; SIMULATIONS; POTENTIALS;
D O I
10.1016/j.jnoncrysol.2014.01.004
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermal. transport properties of single-crystalline nanowires (carbon nanowires (CNWs) and silicon nanowires (SiNWs)) covered with amorphous silicon shell are investigated by non-equilibrium molecular dynamics (NEMD). The thermal conductivity of SiNWs covered with amorphous silicon shell (Si/a-Si core-shell NWs) is obviously lower than that of single-crystalline SiNWs and it keeps approximately constant when the temperature exceeds a definite value for the diffusion properties of amorphous shell. It is quite different from that of single-crystalline SiNWs whose thermal conductivity decreases significantly for relatively higher temperature. Compared to single-crystalline SiNWs, Si/a-Si core-shell NWs express stronger non-propagation, diffusion thermal transport properties. The thermal transport properties of CNWs covered with amorphous silicon shell (C/a-Si core-shell NWs) are essentially similar to that of Si/a-Si core-shell NWs. It expresses stronger nonpropagation, diffusion thermal transport properties and its thermal conductivity increases very little with the growth of length. However, its diffusion characteristics are weaker than that of Si/a-Si core-shell NWs. Generally speaking, the amorphous shell and amorphous/crystalline interface play a negative role to the thermal conductivities and an enhance role to the diffusion characteristics of single-crystalline nanowires, however, their degree of effect on different single-crystalline nanomaterials is different. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 138
页数:7
相关论文
共 28 条
[1]   MODIFIED EMBEDDED-ATOM POTENTIALS FOR CUBIC MATERIALS AND IMPURITIES [J].
BASKES, MI .
PHYSICAL REVIEW B, 1992, 46 (05) :2727-2742
[2]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[3]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[4]   Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
NANO LETTERS, 2010, 10 (03) :847-851
[5]   Atomistic Simulations of Heat Transport in Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[6]   Si/a-Si core/shell nanowires as nonvolatile crossbar switches [J].
Dong, Yajie ;
Yu, Guihua ;
McAlpine, Michael C. ;
Lu, Wei ;
Lieber, Charles M. .
NANO LETTERS, 2008, 8 (02) :386-391
[7]   Lattice dynamical Debye-Waller factor for silicon [J].
Flensburg, C ;
Stewart, RF .
PHYSICAL REVIEW B, 1999, 60 (01) :284-291
[8]   Investigation of the thermal-transport properties for silicon nanofilm covered with graphene via nonequilibrium molecular dynamics [J].
Gao, Yufei ;
Jing, Yuhang ;
Meng, Qingyuan ;
Zhang, Lu ;
Liu, Jiaqiu ;
Qin, Xian .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (09) :1728-1734
[9]   Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics [J].
Heino, P. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 60 (02) :171-179
[10]   Thermal conductivity reduction in core-shell nanowires [J].
Hu, Ming ;
Zhang, Xiaoliang ;
Giapis, Konstantinos P. ;
Poulikakos, Dimos .
PHYSICAL REVIEW B, 2011, 84 (08)