A martingale decomposition for quadratic forms of Markov chains (with applications)

被引:6
作者
Atchade, Yves F. [1 ]
Cattaneo, Matias D. [2 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Econ, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Central limit theorems; Markov chains; Markov chain Monte Carlo; Martingale approximations; Quadratic forms; U-statistics; CENTRAL LIMIT-THEOREMS; SEMIPARAMETRIC ESTIMATION; ASYMPTOTIC VARIANCE; U-STATISTICS; STATIONARY; ESTIMATORS; MODELS;
D O I
10.1016/j.spa.2013.09.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a martingale-based decomposition for a general class of quadratic forms of Markov chains, which resembles the well-known Hoeffding decomposition of U-statistics of i.i.d. data up to a reminder term. To illustrate the applicability of our results, we discuss how this decomposition may be used to studying the large-sample properties of certain statistics in two problems: (i) we examine the asymptotic behavior of lag-window estimators in time series, and (ii) we derive an asymptotic linear representation and limiting distribution of U-statistics with varying kernels in time series. We also discuss simplified examples of interest in statistics and econometrics. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:646 / 677
页数:32
相关论文
共 27 条
[1]  
[Anonymous], 1981, SPECTRAL ANAL TIME S
[2]  
[Anonymous], 2009, MARKOV CHAINS STOCHA
[3]   KERNEL ESTIMATORS OF ASYMPTOTIC VARIANCE FOR ADAPTIVE MARKOV CHAIN MONTE CARLO [J].
Atchade, Yves F. .
ANNALS OF STATISTICS, 2011, 39 (02) :990-1011
[4]   Approximations and limit theory for quadratic forms of linear processes [J].
Bhansali, R. J. ;
Giraitis, L. ;
Kokoszka, P. S. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (01) :71-95
[5]   Robust Data-Driven Inference for Density-Weighted Average Derivatives [J].
Cattaneo, Matias D. ;
Crump, Richard K. ;
Jansson, Michael .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) :1070-1083
[6]   SEMIPARAMETRIC ESTIMATION FROM TIME-SERIES WITH LONG-RANGE DEPENDENCE [J].
CHENG, B ;
ROBINSON, PM .
JOURNAL OF ECONOMETRICS, 1994, 64 (1-2) :335-353
[7]   Central limit theorem and the bootstrap for U-statistics of strongly mixing data [J].
Dehling, Herold ;
Wendler, Martin .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) :126-137
[8]   Practical drift conditions for subgeometric rates of convergence [J].
Douc, R ;
Fort, G ;
Moulines, E ;
Soulier, P .
ANNALS OF APPLIED PROBABILITY, 2004, 14 (03) :1353-1377
[9]  
Eagleson G., 1979, Australian Journal of Statistics, V21, P221, DOI 10.1111/j.1467-842X.1979.tb01141.x
[10]   BATCH MEANS AND SPECTRAL VARIANCE ESTIMATORS IN MARKOV CHAIN MONTE CARLO [J].
Flegal, James M. ;
Jones, Galin L. .
ANNALS OF STATISTICS, 2010, 38 (02) :1034-1070