The discrete gradient evolutionary strategy method for global optimization

被引:1
作者
Abbass, HA [1 ]
Bagirov, AM [1 ]
Zhang, J [1 ]
机构
[1] Univ New S Wales, Australian Def Force Acad, Artificial Life & Adapt Robot Lab, Sch Informat Technol & Elect Engn, Canberra, ACT 2600, Australia
来源
CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS | 2003年
关键词
D O I
10.1109/CEC.2003.1299608
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Global optimization problems continue to be a challenge in computational mathematics. The field is progressing in two streams: deterministic and heuristic approaches. In this paper, we present a hybrid method that uses the discrete gradient method, which is a derivative free local search method, and evolutionary strategies. We show that the hybridization of the two methods is better than each of them in isolation.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 1997, COMPUTATIONAL INTELL, DOI DOI 10.1007/978-1-4615-6331-0_6
[2]  
Bagirov A., 1999, INVESTIGACAO OPERACI, V19, P75
[3]  
BAGIROV AM, IN PRESS J GLOBAL OP
[4]   ITERATIVE METHODS FOR THE LOCALIZATION OF THE GLOBAL MAXIMUM [J].
BASSO, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :781-792
[5]  
Becker R. W., 1970, Proceedings of the 8th annual Allerton conference on circuit and system theory, P3
[7]  
Brent R. P., 2002, Algorithms for Minimization without Derivatives
[8]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[9]   ON DESCENT FROM LOCAL MINIMA [J].
GOLDSTEIN AA ;
PRICE, JF .
MATHEMATICS OF COMPUTATION, 1971, 25 (115) :569-574
[10]  
GOMEZ S, 1982, LECT NOTES MATH, V909, P34