Nonparametric M-quantile regression using penalised splines

被引:43
作者
Pratesi, Monica [1 ]
Ranalli, M. Giovanna [2 ]
Salvati, Nicola [1 ]
机构
[1] Univ Pisa, Dipartimento Stat & Matemat Applicata Econ, Pisa, Italy
[2] Univ Perugia, Dipartimento Econ Finanza & Stat, I-06100 Perugia, Italy
关键词
robust regression; smoothing; iteratively reweighted least squares; quantile crossing;
D O I
10.1080/10485250802638290
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression investigates the conditional quantile functions of a response variable in terms of a set of covariates. M-quantile regression extends this idea by a 'quantile-like' generalisation of regression based on influence functions. In this work, we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to have a certain parametric form, but can be left undefined and estimated from the data. Penalised splines are employed to estimate them. This choice makes it easy to move to bivariate smoothing and semiparametric modelling. An algorithm based on iteratively reweighted penalised least squares to actually fit the model is proposed. Quantile crossing is addressed using an a posteriori adjustment to the function fits following He [1]. Simulation studies show the finite sample properties of the proposed estimation technique.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 35 条
[1]  
[Anonymous], 2005, J OFF STAT
[2]  
[Anonymous], 1998, Case Studies in Environmental Statistics, DOI DOI 10.1007/978-1-4612-2226-2_4
[3]   Quantile regression with monotonicity restrictions using P-splines and the L1-norm [J].
Bollaerts, Kaatje ;
Eilers, Paul H. C. ;
Aerts, Marc .
STATISTICAL MODELLING, 2006, 6 (03) :189-207
[4]  
BRECKLING J, 1988, BIOMETRIKA, V75, P761
[5]   GLOBAL NONPARAMETRIC-ESTIMATION OF CONDITIONAL QUANTILE FUNCTIONS AND THEIR DERIVATIVES [J].
CHAUDHURI, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 39 (02) :246-269
[6]  
Chu CK, 1998, J AM STAT ASSOC, V93, P526, DOI 10.2307/2670100
[7]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[8]   Flexible smoothing with B-splines and penalties [J].
Eilers, PHC ;
Marx, BD .
STATISTICAL SCIENCE, 1996, 11 (02) :89-102
[9]  
French JL, 2001, J AM STAT ASSOC, V96, P1285
[10]  
Green P. J., 1993, NONPARAMETRIC REGRES, DOI DOI 10.1007/978-1-4899-4473-3