A derivation of BLUP - Best linear unbiased predictor

被引:10
作者
Jiang, JM [1 ]
机构
[1] CASE WESTERN RESERVE UNIV, DEPT STAT, CLEVELAND, OH 44106 USA
关键词
mixed models; error contrasts; REML;
D O I
10.1016/S0167-7152(96)00089-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show the best linear unbiased predictor (BLUP) can be derived as the best predictor (under normality) based on all error contrasts (i.e., transformation of data with mean 0). The result reveals an interesting connection between BLUP and REML - restricted or residual maximum likelihood - estimates.
引用
收藏
页码:321 / 324
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1988, Estimation of variance components and applications
[2]  
Bulmer M. G., 1980, MATH THEORY QUANTITA
[3]  
DEMPFLE L, 1977, ANN GENET SEL ANIM, V9, P27, DOI 10.1051/1297-9686-9-1-27
[4]   ROBUST ESTIMATION OF VARIANCE-COMPONENTS [J].
FELLNER, WH .
TECHNOMETRICS, 1986, 28 (01) :51-60
[5]   SIRE EVALUATION WITH BEST LINEAR UNBIASED PREDICTORS - RESPONSE [J].
GIANOLA, D ;
GOFFINET, B .
BIOMETRICS, 1982, 38 (04) :1085-1086
[6]   EXTENSION OF GAUSS-MARKOV THEOREM TO INCLUDE ESTIMATION OF RANDOM EFFECTS [J].
HARVILLE, D .
ANNALS OF STATISTICS, 1976, 4 (02) :384-395
[7]  
Harville D. A., 1990, Advances in statistical methods for genetic improvement of livestock.., P239
[8]  
HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796
[9]  
HENDERSON C. R., 1963, NATL ACAD SCI NATL RES COUNC PUBL, V982, P141
[10]  
HENDERSON CR, 1950, ANN MATH STAT, V21, P309