The measurement of flame surface evolution in both space and time is necessary for the advancement of knowledge concerning the physical processes contributing to lifted jet flame stabilisation. Previous studies either reproduce the flame front accurately in three-dimensional space or in time. In this study a measurement system capable of both is presented. Based on the Mie-scattering of oil droplets added to the jet flow, the system reconstructs the volumetric surface at the base of a lifted jet flame from a series of two-dimensional slices. The slices are created using a pulsed high-speed laser and a polygonal laser scanner unit which serves to sweep the laser beam through the measurement volume. A single high-speed camera is used for recording the subsequent measurement slices. The achieved temporal and spatial resolution as well as the accuracy and precision of the sheet placement are discussed in respect to the flames' scales. The first results of the reconstruction of the lifted jet flame at its stabilisation point show the potential of such measurements to avoid the ambiguities in interpreting conventional 2D-data.