Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability

被引:94
作者
Wang, Wan Lin [1 ]
Oh, Byeong-Yun [2 ]
Park, Ju-Young [1 ]
Ki, Hangil [2 ]
Jang, Jaewon [2 ]
Lee, Gab-Yong [3 ]
Gu, Hal-Bon [1 ]
Ham, Moon-Ho [2 ]
机构
[1] Chonnam Natl Univ, Dept Elect Engn, Gwangju 61186, South Korea
[2] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangiu 61005, South Korea
[3] Catholic Univ Daegu, Dept Life Chem, Daegu 38430, South Korea
基金
新加坡国家研究基金会;
关键词
Titanium niobium oxide; Graphene; Composite; Anode; Lithium ion battery; Energy storage; HIGH-RATE PERFORMANCE; ION BATTERIES; ANODE MATERIALS; ENERGY-STORAGE; PARTICLE-SIZE; TRANSPARENT; ELECTRODE; TINB2O7; FILMS; INSERTION;
D O I
10.1016/j.jpowsour.2015.09.078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Owing to their multiple redox couples, titanium niobium-based oxides are still considered promising candidates for use as anodes for safe, rechargeable lithium ion batteries with high energy and power densities. Titanium niobium-based oxide electrodes have, however, exhibited relatively poor cycling performance as a result of pulverization. In this study, we report on a simple two-step solid-state reaction route for producing hybrid composites of Ti2Nb10O29 (TNO) anchored on reduced graphene oxide (RGO), and the electrochemical performance of the resulting TNO/RGO composites. Solid-state reactions enable both the formation of TNO and the uniform distribution of RGO in the TNO/RGO composites. The TNO/RGO composites exhibited discharge and charge capacities of 261 and 256 mAh g(-1), respectively, with much better cycling performance (182 mAh g(-1), after the 50th cycles) and rate capability (165 mAh g(-1) at a current density of 500 mA g(-1)) compared to the pure TNO. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 278
页数:7
相关论文
共 46 条
[1]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]   Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method [J].
Bose, Saswata ;
Kuila, Tapas ;
Mishra, Ananta Kumar ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) :9696-9703
[4]   Lithium insertion in an oriented nanoporous oxide with a tunnel structure:: Ti2Nb2O9 [J].
Colin, J. -F. ;
Pralong, V. ;
Hervieu, M. ;
Caignaert, V. ;
Raveau, B. .
CHEMISTRY OF MATERIALS, 2008, 20 (04) :1534-1540
[5]   Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation [J].
Dai, Ke ;
Peng, Tianyou ;
Ke, Dingning ;
Wei, Bingqing .
NANOTECHNOLOGY, 2009, 20 (12)
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage [J].
Guo, Bingkun ;
Yu, Xiqian ;
Sun, Xiao-Guang ;
Chi, Miaofang ;
Qiao, Zhen-An ;
Liu, Jue ;
Hu, Yong-Sheng ;
Yang, Xiao-Qing ;
Goodenough, John B. ;
Dai, Sheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (07) :2220-2226
[10]   SnO2/graphene composite as highly reversible anode materials for lithium ion batteries [J].
Guo, Qi ;
Zheng, Zhe ;
Gao, Hailing ;
Ma, Jia ;
Qin, Xue .
JOURNAL OF POWER SOURCES, 2013, 240 :149-154