Identifying Ethical Considerations for Machine Learning Healthcare Applications

被引:194
作者
Char, Danton S. [1 ]
Abramoff, Michael D. [2 ,3 ]
Feudtner, Chris [4 ,5 ]
机构
[1] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[2] Univ Iowa, Iowa City, IA 52242 USA
[3] Digital Diagnost, Amsterdam, Netherlands
[4] Univ Penn, Philadelphia, PA 19104 USA
[5] Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Artificial intelligence; effectiveness; ethics; machine learning; safety; test characteristics; ARTIFICIAL-INTELLIGENCE; BIG DATA;
D O I
10.1080/15265161.2020.1819469
中图分类号
B82 [伦理学(道德学)];
学科分类号
摘要
Along with potential benefits to healthcare delivery, machine learning healthcare applications (ML-HCAs) raise a number of ethical concerns. Ethical evaluations of ML-HCAs will need to structure the overall problem of evaluating these technologies, especially for a diverse group of stakeholders. This paper outlines a systematic approach to identifying ML-HCA ethical concerns, starting with a conceptual model of the pipeline of the conception, development, implementation of ML-HCAs, and the parallel pipeline of evaluation and oversight tasks at each stage. Over this model, we layer key questions that raise value-based issues, along with ethical considerations identified in large part by a literature review, but also identifying some ethical considerations that have yet to receive attention. This pipeline model framework will be useful for systematic ethical appraisals of ML-HCA from development through implementation, and for interdisciplinary collaboration of diverse stakeholders that will be required to understand and subsequently manage the ethical implications of ML-HCAs.
引用
收藏
页码:7 / 17
页数:11
相关论文
共 57 条
[11]   Implementing Machine Learning in Health Care - Addressing Ethical Challenges [J].
Char, Danton S. ;
Shah, Nigam H. ;
Magnus, David .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (11) :981-983
[12]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[13]  
Churchman CW, 1957, INTRO OPERATIONS RES, DOI [10.2307/3006881, DOI 10.2307/3006881]
[14]   The Legal And Ethical Concerns That Arise From Using Complex Predictive Analytics In Health Care [J].
Cohen, I. Glenn ;
Amarasingham, Ruben ;
Shah, Anand ;
Xie, Bin ;
Lo, Bernard .
HEALTH AFFAIRS, 2014, 33 (07) :1139-1147
[15]  
Comfort N., 2016, ATLANTIC
[16]  
Commissioner Office of the, 2020, FDA PERM MARK ART IN
[17]  
Daniel G., 2019, Current state and near-term priorities for AI-enabled diagnostic support software in health care
[18]   Influence of computer-aided detection on performance of screening mammography [J].
Fenton, Joshua J. ;
Taplin, Stephen H. ;
Carney, Patricia A. ;
Abraham, Linn ;
Sickles, Edward A. ;
D'Orsi, Carl ;
Berns, Eric A. ;
Cutter, Gary ;
Hendrick, R. Edward ;
Barlow, William E. ;
Elmore, Joann G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (14) :1399-1409
[19]   Ethical Framework for Risk Stratification and Mitigation Programs for Children With Medical Complexity [J].
Feudtner, Chris ;
Schall, Theodore ;
Nathanson, Pamela ;
Berry, Jay .
PEDIATRICS, 2018, 141 :S250-S258
[20]   Adversarial attacks on medical machine learning [J].
Finlayson, Samuel G. ;
Bowers, John D. ;
Ito, Joichi ;
Zittrain, Jonathan L. ;
Beam, Andrew L. ;
Kohane, Isaac S. .
SCIENCE, 2019, 363 (6433) :1287-1289