Role of 3′UTRs in the Translation of mRNAs Regulated by Oncogenic eIF4E-A Computational Inference

被引:13
作者
Santhanam, Arti N. [1 ]
Bindewald, Eckart [2 ]
Rajasekhar, Vinagolu K. [3 ]
Larsson, Ola [4 ,5 ]
Sonenberg, Nahum [4 ,5 ]
Colburn, Nancy H. [2 ]
Shapiro, Bruce A. [6 ]
机构
[1] NCI, Gene Regulat Sect, Lab Canc Prevent, Frederick, MD 21701 USA
[2] NCI, SAIC Frederick Inc, Basic Res Program, Frederick, MD USA
[3] Memorial Sloan Kettering Canc Ctr, Dev Biol Program, New York, NY USA
[4] McGill Univ, Dept Biochem, Montreal, PQ H3A 2T5, Canada
[5] McGill Univ, McGill Canc Ctr, Montreal, PQ H3A 2T5, Canada
[6] NCI, Ctr Canc Res, Nanobiol Program, Frederick, MD USA
基金
美国国家卫生研究院;
关键词
SECONDARY STRUCTURE; INITIATION; EXPRESSION; MICRORNAS; CELLS; RECRUITMENT; ACTIVATION; PREDICTION; MIRBASE; PROTEIN;
D O I
10.1371/journal.pone.0004868
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Eukaryotic cap-dependent mRNA translation is mediated by the initiation factor eIF4E, which binds mRNAs and stimulates efficient translation initiation. eIF4E is often overexpressed in human cancers. To elucidate the molecular signature of eIF4E target mRNAs, we analyzed sequence and structural properties of two independently derived polyribosome recruited mRNA datasets. These datasets originate from studies of mRNAs that are actively being translated in response to cells overexpressing eIF4E or cells with an activated oncogenic AKT: eIF4E signaling pathway, respectively. Comparison of eIF4E target mRNAs to mRNAs insensitive to eIF4E-regulation has revealed surprising features in mRNA secondary structure, length and microRNA-binding properties. Fold-changes (the relative change in recruitment of an mRNA to actively translating polyribosomal complexes in response to eIF4E overexpression or AKT upregulation) are positively correlated with mRNA G+C content and negatively correlated with total and 3'UTR length of the mRNAs. A machine learning approach for predicting the fold change was created. Interesting tendencies of secondary structure stability are found near the start codon and at the beginning of the 3'UTR region. Highly upregulated mRNAs show negative selection (site avoidance) for binding sites of several microRNAs. These results are consistent with the emerging model of regulation of mRNA translation through a dynamic balance between translation initiation at the 5'UTR and microRNA binding at the 3'UTR.
引用
收藏
页数:10
相关论文
共 47 条
[1]   let-7 microRNA functions as a potential growth suppressor in human colon cancer cells [J].
Akao, Yukihiro ;
Nakagawa, Yoshihito ;
Naoe, Tomoki .
BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2006, 29 (05) :903-906
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Local RNA base pairing probabilities in large sequences [J].
Bernhart, SH ;
Hofacker, IL ;
Stadler, PF .
BIOINFORMATICS, 2006, 22 (05) :614-615
[5]   RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers [J].
Bindewald, E ;
Shapiro, BA .
RNA, 2006, 12 (03) :342-352
[6]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[7]   MicroRNAs and cancer [J].
Cowland, Jack B. ;
Hother, Christoffer ;
Gronwaek, Kirsten .
APMIS, 2007, 115 (10) :1090-1106
[8]   Getting to the root of miRNA-Mediated gene silencing [J].
Eulalio, Ana ;
Huntzinger, Eric ;
Izaurralde, Elisa .
CELL, 2008, 132 (01) :9-14
[9]  
FILIPOWICZ W, 2008, NAT REV GENET
[10]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)