Cotton Leaf Senescence can be Delayed by Nitrophenolate Spray Through Enhanced Antioxidant Defence System

被引:66
作者
Djanaguiraman, M. [1 ]
Sheeba, J. Annie [1 ]
Devi, D. Durga [1 ]
Bangarusamy, U. [1 ]
机构
[1] Tamil Nadu Agr Univ, Dept Crop Physiol, Coimbatore 641003, Tamil Nadu, India
关键词
ascorbate; oxidative stress; peroxidase; phenols; senescence; PHOTOSYSTEM-II PHOTOCHEMISTRY; OXIDATIVE STRESS; GLUTATHIONE-REDUCTASE; HYDROGEN-PEROXIDE; SUPEROXIDE-DISMUTASE; PHENOLIC-COMPOUNDS; BOUND PEROXIDASE; ASCORBIC-ACID; LEAVES; WHEAT;
D O I
10.1111/j.1439-037X.2009.00360.x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Leaf senescence is an oxidative process, and most of the catabolic processes involved in senescence are propagated irreversibly once initiated. An experiment was conducted to test the hypothesis that nitrophenolates (Atonik, a plant growth regulator) spray can delay the leaf senescence through reduced oxidative damage. Atonik 3.75 g a.i. ha(-1) was sprayed during boll filling stage on cotton, and the senescence process was evaluated by quantifying total chlorophyll contents, photosynthetic rate, Fv/Fm ratio, various reactive oxygen species (ROS) content, antioxidant content and antioxidant enzyme activity from 90 days after sowing (DAS) to 130 DAS. The result indicated that nitrophenolate spray reduced the hydrogen peroxide (H2O2), superoxide anion (O-2(-)) accumulation, lipid peroxidation (malondialdehyde), lipoxygenase activity and membrane permeability over unsprayed control. The antioxidant enzyme activity (superoxide dismutase, SOD; ascorbate peroxidase, APX; peroxidase, POX; glutathione peroxidase, GSH-Px) were significantly increased by the nitrophenolate spray. POX (118.1 %) and GSH-Px (143.3 %) activities were enhanced to a higher level compared to APX (8.5 %) activity at 130 DAS. Enhanced accumulation of ascorbate (144.9 %), phenol (154.7 %) and proline (50 %) was seen in nitrophenolate-sprayed plants compared with unsprayed control plants at 130 DAS. Ascorbate content is increased by higher dehydroascorbate reductase enzyme activity. Ascorbate was thus able to replenish reducing equivalents to phenoxyl radicals resulting in an increase in phenolic compounds. The increased phenolic acid content may be involved in scavenging the ROS produced during senescence process. The higher level of reduced ascorbate and low level of endogenous H2O2 in the leaves may be the prerequisite for delayed leaf senescence in the nitrophenolate-sprayed plants. Based on the present work, it can be concluded that nitrophenolate-sprayed plants can postpone the leaf senescence by peroxide/phenolic/ascorbate system which is involved in scavenging the ROS produced during leaf senescence.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 86 条
[1]   DECREASE IN ACTIVITY OF GLUTATHIONE-REDUCTASE ENHANCES PARAQUAT SENSITIVITY IN TRANSGENIC NICOTIANA-TABACUM [J].
AONO, M ;
SAJI, H ;
FUJIYAMA, K ;
SUGITA, M ;
KONDO, N ;
TANAKA, K .
PLANT PHYSIOLOGY, 1995, 107 (02) :645-648
[2]   EVALUATION OF THE ANTIOXIDANT AND PROOXIDANT ACTIONS OF GALLIC ACID AND ITS DERIVATIVES [J].
ARUOMA, OI ;
MURCIA, A ;
BUTLER, J ;
HALLIWELL, B .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1993, 41 (11) :1880-1885
[3]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[4]   Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging [J].
Bailly, C ;
Benamar, A ;
Corbineau, F ;
Come, D .
PHYSIOLOGIA PLANTARUM, 1996, 97 (01) :104-110
[5]  
Bartoli CG, 1999, J EXP BOT, V50, P375, DOI 10.1093/jexbot/50.332.373
[6]   Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV [J].
Bartoli, CG ;
Pastori, GM ;
Foyer, CH .
PLANT PHYSIOLOGY, 2000, 123 (01) :335-343
[7]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[8]  
BEHRA TH, 1999, INDIAN J PLANT PHYSL, V4, P236
[9]   ASSAYING FOR SUPEROXIDE-DISMUTASE ACTIVITY - SOME LARGE CONSEQUENCES OF MINOR CHANGES IN CONDITIONS [J].
BEYER, WF ;
FRIDOVICH, I .
ANALYTICAL BIOCHEMISTRY, 1987, 161 (02) :559-566
[10]   CATALASE AND PEROXIDASE IN PRIMARY BEAN-LEAVES DURING DEVELOPMENT AND SENESCENCE [J].
BRABER, JM .
ZEITSCHRIFT FUR PFLANZENPHYSIOLOGIE, 1980, 97 (02) :135-144