Use of Atomistic Phonon Dispersion and Boltzmann Transport Formalism to Study the Thermal Conductivity of Narrow Si Nanowires

被引:4
作者
Karamitaheri, Hossein [1 ,2 ]
Neophytou, Neophytos [1 ,3 ]
Kosina, Hans [1 ]
机构
[1] TU Wien, Inst Microelect, A-1040 Vienna, Austria
[2] Sharif Univ Technol, Sch Elect Engn, Tehran 113659363, Iran
[3] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
关键词
Silicon nanowires; thermal conductivity; modified valence-force-field method; Boltzmann transport equation; low-dimensional effects; THIN SILICON NANOWIRES; SEMICONDUCTOR NANOWIRE; DEPENDENCE; CRYSTALS; STRAIN; LAYERS; GE;
D O I
10.1007/s11664-013-2884-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the thermal properties of ultra-narrow silicon nanowires (NW) with diameters from 3 nm to 12 nm. We use the modified valence-force-field method for computation of phononic dispersion and the Boltzmann transport equation for calculation of phonon transport. Phonon dispersion in ultra-narrow 1D structures differs from dispersion in the bulk and dispersion in thicker NWs, which leads to different thermal properties. We show that as the diameter of the NW is reduced the density of long-wavelength phonons per cross section area increases, which increases their relative importance in carrying heat compared with the rest of the phonon spectrum. This effect, together with the fact that low-frequency, low-wavevector phonons are affected less by scattering and have longer mean-free-paths than phonons in the rest of the spectrum, leads to a counter-intuitive increase in thermal conductivity as the diameter is reduced to the sub-ten-nanometers range. This behavior is retained in the presence of moderate boundary scattering.
引用
收藏
页码:1829 / 1836
页数:8
相关论文
共 41 条
[1]   Thermoelectric properties of silicon nanostructures [J].
Aksamija, Z. ;
Knezevic, I. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2010, 9 (3-4) :173-179
[2]   Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2010, 82 (04)
[3]   Thermal conductivity of germanium crystals with different isotopic compositions [J].
AsenPalmer, M ;
Bartkowski, K ;
Gmelin, E ;
Cardona, M ;
Zhernov, AP ;
Inyushkin, AV ;
Taldenkov, A ;
Ozhogin, VI ;
Itoh, KM ;
Haller, EE .
PHYSICAL REVIEW B, 1997, 56 (15) :9431-9447
[4]   Ballistic to diffusive crossover of heat flow in graphene ribbons [J].
Bae, Myung-Ho ;
Li, Zuanyi ;
Aksamija, Zlatan ;
Martin, Pierre N. ;
Xiong, Feng ;
Ong, Zhun-Yong ;
Knezevic, Irena ;
Pop, Eric .
NATURE COMMUNICATIONS, 2013, 4
[5]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[6]   Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit [J].
Carrete, J. ;
Gallego, L. J. ;
Varela, L. M. ;
Mingo, N. .
PHYSICAL REVIEW B, 2011, 84 (07)
[7]   Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
NANO LETTERS, 2010, 10 (03) :847-851
[8]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[9]   ANALYSIS OF LATTICE THERMAL CONDUCTIVITY [J].
HOLLAND, MG .
PHYSICAL REVIEW, 1963, 132 (06) :2461-&
[10]   The lattice thermal conductivity of a semiconductor nanowire [J].
Huang, MJ ;
Chong, WY ;
Chang, TM .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)