Pattern formation in a reaction-diffusion parasite-host model

被引:7
|
作者
Zhang, Baoxiang [1 ]
Cai, Yongli [1 ]
Wang, Bingxian [1 ]
Wang, Weiming [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
基金
美国国家科学基金会;
关键词
parasite-host model; Stability; Steady-state; Turing pattern; PREDATOR-PREY MODEL; EPIDEMIC MODEL; TRANSMISSION DYNAMICS; TURING PATTERNS; SPATIOTEMPORAL DYNAMICS; SPATIAL-PATTERNS; TRAVELING-WAVES; STEADY-STATE; ZIKA VIRUS; DISEASE;
D O I
10.1016/j.physa.2019.03.088
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the Turing pattern formation of a reaction-diffusion parasite-host model analytically and numerically. We give the stability of the constant positive steady-state which shows that the model exhibits stationary Turing pattern as a result of diffusion. Via numerical simulations, we present the pattern formation and find that the model dynamics exhibits a diffusion-controlled formation growth of "spots -> spots-stripes -> stripes -> holes-stripes -> holes" pattern replication. The results show that we must do our best to regulate the parameters in the special range to avoid disease outbreak. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:732 / 740
页数:9
相关论文
共 50 条
  • [31] Understanding the dual effects of linear cross-diffusion and geometry on reaction-diffusion systems for pattern formation
    Sarfaraz, Wakil
    Yigit, Gulsemay
    Barreira, Raquel
    Remaki, Lakhdar
    Alhazmi, Muflih
    Madzvamuse, Anotida
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [32] SPARSE OPTIMAL CONTROL OF PATTERN FORMATIONS FOR AN SIR REACTION-DIFFUSION EPIDEMIC MODEL
    Chang, Lili
    Gong, Wei
    Jin, Zhen
    Sun, Gui-Quan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) : 1764 - 1790
  • [33] Pattern formation in a two-component reaction-diffusion system with delayed processes on a network
    Petit, Julien
    Asllani, Malbor
    Fanelli, Duccio
    Lauwens, Ben
    Carletti, Timoteo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 230 - 249
  • [34] Pattern formation in a reaction-diffusion rumor propagation system with Allee effect and time delay
    Zhu, Linhe
    He, Le
    NONLINEAR DYNAMICS, 2022, 107 (03) : 3041 - 3063
  • [35] Dynamics and pattern formation in a reaction-diffusion-advection mussel–algae model
    Jinfeng Wang
    Xue Tong
    Yongli Song
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [36] Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model
    Zhao, Hongyong
    Zhu, Linhe
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (06):
  • [37] DYNAMICS OF A PARASITE-HOST EPIDEMIOLOGICAL MODEL IN SPATIAL HETEROGENEOUS ENVIRONMENT
    Cai, Yongli
    Wang, Weiming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (04): : 989 - 1013
  • [38] GLOBAL ANALYSIS OF A SIMPLE PARASITE-HOST MODEL WITH HOMOCLINIC ORBITS
    Li, Jianquan
    Xiao, Yanni
    Yang, Yali
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (04) : 767 - 784
  • [39] Pattern dynamics of a predator-prey reaction-diffusion model with spatiotemporal delay
    Xu, Jian
    Yang, Gaoxiang
    Xi, Hongguang
    Su, Jianzhong
    NONLINEAR DYNAMICS, 2015, 81 (04) : 2155 - 2163
  • [40] Pattern formation in the iodate-sulfite-thiosulfate reaction-diffusion system
    Liu, Haimiao
    Pojman, John A.
    Zhao, Yuemin
    Pan, Changwei
    Zheng, Juhua
    Yuan, Ling
    Horvath, Attila K.
    Gao, Qingyu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (01) : 131 - 137