Almost sure limit theorems for the maximum of stationary Gaussian sequences

被引:78
作者
Csáki, E
Gonchigdanzan, K
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40292 USA
[2] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
关键词
almost sure central limit theorem; logarithmic average; stationary Gaussian sequence;
D O I
10.1016/S0167-7152(02)00128-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove an almost sure limit theorem for the maxima of stationary Gaussian sequences with covariance r(n) under the condition r(n)logn(log log n)(1+epsilon) = O(1). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 8 条
[1]   A universal result in almost sure central limit theory [J].
Berkes, I ;
Csáki, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (01) :105-134
[2]   Results and problems related to the pointwise central limit theorem [J].
Berkes, I .
ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, :59-96
[3]  
BERKES I, 2000, STOCHASTIC PROCESS A, V91, P77
[4]   Almost sure convergence in extreme value theory [J].
Cheng, SH ;
Peng, L ;
Qi, YC .
MATHEMATISCHE NACHRICHTEN, 1998, 190 :43-50
[5]   On almost sure max-limit theorems [J].
Fahrner, I ;
Stadtmuller, U .
STATISTICS & PROBABILITY LETTERS, 1998, 37 (03) :229-236
[6]   A strong invariance principle for the logarithmic average of sample maxima [J].
Fahrner, I .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 93 (02) :317-337
[7]  
Leadbetter M. R., 1983, Springer Series in Statistics, DOI 10.1007/978-1-4612-5449-2
[8]  
Weber M., 2000, EXPO MATH, V18, P97