Dynamics of Transcription Factor Binding Site Evolution

被引:69
作者
Tugrul, Murat [1 ]
Paixao, Tiago [1 ]
Barton, Nicholas H. [1 ]
Tkacik, Gasper [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
基金
欧洲研究理事会;
关键词
STATISTICAL PHYSICS; DOSAGE COMPENSATION; RAPID EVOLUTION; INDEL RATES; SPECIFICITY; SELECTION; SEQUENCE; GENOME; ORIGINS; ENERGY;
D O I
10.1371/journal.pgen.1005639
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than similar to 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of "pre-sites" or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics.
引用
收藏
页数:28
相关论文
共 86 条
[1]   Conservation and de novo acquisition of dosage compensation on newly evolved sex chromosomes in Drosophila [J].
Alekseyenko, Artyom A. ;
Ellison, Christopher E. ;
Gorchakov, Andrey A. ;
Zhou, Qi ;
Kaiser, Vera B. ;
Toda, Nick ;
Walton, Zaak ;
Peng, Shouyong ;
Park, Peter J. ;
Bachtrog, Doris ;
Kuroda, Mitzi I. .
GENES & DEVELOPMENT, 2013, 27 (08) :853-858
[2]   Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution [J].
Arnold, Cosmas D. ;
Gerlach, Daniel ;
Spies, Daniel ;
Matts, Jessica A. ;
Sytnikova, Yuliya A. ;
Pagani, Michaela ;
Lau, Nelson C. ;
Stark, Alexander .
NATURE GENETICS, 2014, 46 (07) :685-692
[3]   On the application of statistical physics to evolutionary biology [J].
Barton, N. H. ;
Coe, J. B. .
JOURNAL OF THEORETICAL BIOLOGY, 2009, 259 (02) :317-324
[4]   Adaptive evolution of transcription factor binding sites -: art. no. 42 [J].
Berg, J ;
Willmann, S ;
Lässig, M .
BMC EVOLUTIONARY BIOLOGY, 2004, 4 (1)
[5]   SELECTION OF DNA-BINDING SITES BY REGULATORY PROTEINS - STATISTICAL-MECHANICAL THEORY AND APPLICATION TO OPERATORS AND PROMOTERS [J].
BERG, OG ;
VONHIPPEL, PH .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 193 (04) :723-743
[6]   Transcriptional regulation by the numbers: applications [J].
Bintu, L ;
Buchler, NE ;
Garcia, HG ;
Gerland, U ;
Hwa, T ;
Kondev, J ;
Kuhlman, T ;
Phillips, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) :125-135
[7]   Transcriptional regulation by the numbers: models [J].
Bintu, L ;
Buchler, NE ;
Garcia, HG ;
Gerland, U ;
Hwa, T ;
Kondev, J ;
Phillips, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) :116-124
[8]   The genomic landscape of short insertion and deletion polymorphisms in the chicken (Gallus gallus) genome:: A high frequency of deletions in tandem duplicates [J].
Brandstrom, Mikael ;
Ellegren, Hans .
GENETICS, 2007, 176 (03) :1691-1701
[9]   Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli [J].
Brewster, Robert C. ;
Jones, Daniel L. ;
Phillips, Rob .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (12)
[10]   Problems and Solutions for Estimating Indel Rates and Length Distributions [J].
Cartwright, Reed A. .
MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (02) :473-480