Stability and functional properties of Sr0.7Ce0.3MnO3-δ as cathode material for solid oxide fuel cells

被引:3
作者
Kuritsyna, I. E. [1 ]
Sinitsyn, V. V. [1 ]
Fedotov, Yu. S. [1 ]
Bredikhin, S. I. [1 ]
Tsipis, E. V. [2 ,3 ]
Kharton, V. V. [1 ,3 ]
机构
[1] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow Oblast, Russia
[2] Univ Aveiro, Mech Technol & Automat Ctr, P-3800 Aveiro, Portugal
[3] Univ Aveiro, Dept Mat & Ceram Engn, P-3800 Aveiro, Portugal
关键词
solid oxide fuel cells; cathode materials; stability tests; diffusion; electric conductivity; ELECTRICAL-PROPERTIES; CONDUCTIVITY; PEROVSKITES;
D O I
10.1134/S1023193514080084
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Studies of oxygen diffusion, interphase exchange, specific electric conductivity, and thermal expansion showed that perovskite-like Sr0.7Ce0.3MnO3 - delta (SCMO) as a potential cathode material for solid oxide fuel cells (SOFCs) has considerable advantages over the conventional materials based on lanthanum-strontium manganites. To prevent the interactions of SCMO with solid electrolyte membranes of stabilized zirconia and lanthanum gallate, it is necessary to deposit protective layers of solid solutions based on cerium oxide, which do not form new phases in contact with SCMO and electrolytes. The trials of model SOFCs with porous SCMO-based cathodes demonstrated satisfactory electrochemical and endurance characteristics of these electrodes.
引用
收藏
页码:713 / 718
页数:6
相关论文
共 50 条
  • [31] Combined Cr and S poisoning of La0.8Sr0.2MnO3-δ (LSM) cathode of solid oxide fuel cells
    Wang, Cheng Cheng
    Darvish, Shadi
    Chen, Kongfa
    Hou, Bingxue
    Zhang, Qi
    Tan, Zanxiong
    Zhong, Yu
    Jiang, San Ping
    ELECTROCHIMICA ACTA, 2019, 312 (202-212) : 202 - 212
  • [32] (La,Sr) MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells
    Murray, EP
    Barnett, SA
    SOLID STATE IONICS, 2001, 143 (3-4) : 265 - 273
  • [33] Performance assessment of Bi0.3Sr0.7Co0.3Fe0.7O3-δ-LSCF composite as cathode for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte
    Khaerudini, Deni S.
    Guan, Guoqing
    Zhang, Peng
    Hao, Xiaogang
    Wang, Zhongde
    Xue, Chunfeng
    Kasai, Yutaka
    Abudula, Abuliti
    JOURNAL OF POWER SOURCES, 2015, 298 : 269 - 279
  • [34] Effect of porous interlayer on the long-term stability of (La0.8Sr0.2)0.97MnO3 cathode for solid oxide fuel cells
    Yang, Jun
    Muroyama, Hiroki
    Matsui, Toshiaki
    Eguchi, Koichi
    JOURNAL OF POWER SOURCES, 2013, 236 : 192 - 199
  • [35] BaCo0.7Fe0.2Nb0.1O3-δ as cathode material for intermediate temperature solid oxide fuel cells
    Yang, Zhibin
    Yang, Chenghao
    Xiong, Bao
    Han, Minfang
    Chen, Fanglin
    JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9164 - 9168
  • [36] Fabrication and electrochemical performance of La0.595V0.005Sr0.4MnO3-δ (LV05SM) cathode material for solid oxide fuel cells
    Kisa, Aysenur Eslem
    Demircan, Oktay
    TURKISH JOURNAL OF CHEMISTRY, 2018, 42 (06) : 1479 - +
  • [37] Structural, Interfacial, and Electrochemical Stability of La0.3Ca0.7Fe0.7Cr0.3O3-δ Electrode Material for Application as the Oxygen Electrode in Reversible Solid Oxide Cells
    Ansari, Haris Masood
    Avila-Brande, David
    Kelly, Steve
    Addo, Paul Kwesi
    Molero-Sanchez, Beatriz
    CRYSTALS, 2022, 12 (06)
  • [38] Atmospheric Plasma-Sprayed La0.3Sr0.7TiO3-γ Interconnect for High-Temperature Solid Oxide Fuel Cells
    Chen, Xu
    Zhang, Shan-Lin
    Li, Cheng-Xin
    Yang, Guan-Jun
    Li, Chang-Jiu
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 1653 - 1663
  • [39] Thermal Expansion Properties of Sr1-xLaxTiO3-δ (0 ≤ x ≤ 0.3) Perovskites in Solid Oxide Fuel Cells
    Wang, Z.
    Mori, M.
    Itoh, T.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 2617 - 2624
  • [40] Strontium and Iron Substituted Lanthanum Nickelate as Cathode Material in Solid Oxide Fuel Cells
    Gilev, A. R.
    Kiselev, E. A.
    Cherepanov, V. A.
    IV SINO-RUSSIAN ASRTU SYMPOSIUM ON ADVANCED MATERIALS AND PROCESSING TECHNOLOGY, 2016, 2016 : 64 - 70