Robust auto-weighted projective low-rank and sparse recovery for visual representation

被引:26
|
作者
Wang, Lei [1 ]
Wang, Bangjun [1 ]
Zhang, Zhao [1 ,2 ,3 ]
Ye, Qiaolin [4 ]
Fu, Liyong [5 ]
Liu, Guangcan [6 ]
Wang, Meng [2 ,3 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci, Hefei, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Artificial Intelligence, Hefei, Anhui, Peoples R China
[4] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Jiangsu, Peoples R China
[5] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Informat & Control, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Auto-weighted low-rank and sparse recovery; Robust representation; Feature extraction; Classification; FACE RECOGNITION; SUBSPACE SEGMENTATION; MATRIX; ILLUMINATION; REDUCTION; PCA;
D O I
10.1016/j.neunet.2019.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing low-rank and sparse representation models cannot preserve the local manifold structures of samples adaptively, or separate the locality preservation from the coding process, which may result in the decreased performance. In this paper, we propose an inductive Robust Auto-weighted Low-Rank and Sparse Representation (RALSR) framework by joint feature embedding for the salient feature extraction of high-dimensional data. Technically, the model of our RALSR seamlessly integrates the joint low-rank and sparse recovery with robust salient feature extraction. Specifically, RALSR integrates the adaptive locality preserving weighting, joint low-rank/sparse representation and the robustness-promoting representation into a unified model. For accurate similarity measure, RALSR computes the adaptive weights by minimizing the joint reconstruction errors over the recovered clean data and salient features simultaneously, where L1-norm is also applied to ensure the sparse properties of learnt weights. The joint minimization can also potentially enable the weight matrix to have the power to remove noise and unfavorable features by reconstruction adaptively. The underlying projection is encoded by a joint low-rank and sparse regularization, which can ensure it to be powerful for salient feature extraction. Thus, the calculated low-rank sparse features of high-dimensional data would be more accurate for the subsequent classification. Visual and numerical comparison results demonstrate the effectiveness of our RALSR for data representation and classification. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:201 / 215
页数:15
相关论文
共 50 条
  • [41] Robust and Low-Rank Representation for Fast Face Identification With Occlusions
    Iliadis, Michael
    Wang, Haohong
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (05) : 2203 - 2218
  • [42] Face Recognition Based on Low-Rank Matrix Representation
    Nguyen Hoang Vu
    Huang Rong
    Yang Wankou
    Sun Changyin
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 4647 - 4652
  • [43] Finger Vein Recognition via Sparse Reconstruction Error Constrained Low-Rank Representation
    Yang, Lu
    Yang, Gongping
    Wang, Kuikui
    Hao, Fanchang
    Yin, Yilong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 4869 - 4881
  • [44] Relaxed Collaborative Representation With Low-Rank and Sparse Matrix Decomposition for Hyperspectral Anomaly Detection
    Su, Hongjun
    Zhang, Huihui
    Wu, Zhaoyue
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6826 - 6842
  • [45] A robust low-rank tensor completion model with sparse noise for higher-order data recovery
    Wang, Min
    Chen, Zhuying
    Zhang, Shuyi
    IET IMAGE PROCESSING, 2024, 18 (12) : 3430 - 3446
  • [46] Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements
    Fornasier, Massimo
    Maly, Johannes
    Naumova, Valeriya
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 392
  • [47] Superpixel-Based Weighted Collaborative Sparse Regression and Reweighted Low-Rank Representation for Hyperspectral Image Unmixing
    Su, Hongjun
    Jia, Cailing
    Zheng, Pan
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 393 - 408
  • [48] Low-rank constrained collaborative representation for robust face recognition
    Lu, Tao
    Guan, Yingjie
    Chen, Deng
    Xiong, Zixiang
    He, Wei
    2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [49] Discriminative Transfer Subspace Learning via Low-Rank and Sparse Representation
    Xu, Yong
    Fang, Xiaozhao
    Wu, Jian
    Li, Xuelong
    Zhang, David
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) : 850 - 863
  • [50] Low-rank and sparse representation based learning for cancer survivability prediction
    Yang, Jie
    Ma, Jun
    Win, Khin Than
    Gao, Junbin
    Yang, Zhenyu
    INFORMATION SCIENCES, 2022, 582 : 573 - 592