Robust auto-weighted projective low-rank and sparse recovery for visual representation

被引:26
|
作者
Wang, Lei [1 ]
Wang, Bangjun [1 ]
Zhang, Zhao [1 ,2 ,3 ]
Ye, Qiaolin [4 ]
Fu, Liyong [5 ]
Liu, Guangcan [6 ]
Wang, Meng [2 ,3 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci, Hefei, Anhui, Peoples R China
[3] Hefei Univ Technol, Sch Artificial Intelligence, Hefei, Anhui, Peoples R China
[4] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Jiangsu, Peoples R China
[5] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Informat & Control, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Auto-weighted low-rank and sparse recovery; Robust representation; Feature extraction; Classification; FACE RECOGNITION; SUBSPACE SEGMENTATION; MATRIX; ILLUMINATION; REDUCTION; PCA;
D O I
10.1016/j.neunet.2019.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing low-rank and sparse representation models cannot preserve the local manifold structures of samples adaptively, or separate the locality preservation from the coding process, which may result in the decreased performance. In this paper, we propose an inductive Robust Auto-weighted Low-Rank and Sparse Representation (RALSR) framework by joint feature embedding for the salient feature extraction of high-dimensional data. Technically, the model of our RALSR seamlessly integrates the joint low-rank and sparse recovery with robust salient feature extraction. Specifically, RALSR integrates the adaptive locality preserving weighting, joint low-rank/sparse representation and the robustness-promoting representation into a unified model. For accurate similarity measure, RALSR computes the adaptive weights by minimizing the joint reconstruction errors over the recovered clean data and salient features simultaneously, where L1-norm is also applied to ensure the sparse properties of learnt weights. The joint minimization can also potentially enable the weight matrix to have the power to remove noise and unfavorable features by reconstruction adaptively. The underlying projection is encoded by a joint low-rank and sparse regularization, which can ensure it to be powerful for salient feature extraction. Thus, the calculated low-rank sparse features of high-dimensional data would be more accurate for the subsequent classification. Visual and numerical comparison results demonstrate the effectiveness of our RALSR for data representation and classification. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:201 / 215
页数:15
相关论文
共 50 条
  • [31] Bayesian Low-Rank and Sparse Nonlinear Representation for Manifold Clustering
    Tang, Kewei
    Zhang, Jie
    Su, Zhixun
    Dong, Jiangxin
    NEURAL PROCESSING LETTERS, 2016, 44 (03) : 719 - 733
  • [32] Robust Subspace Segmentation Via Low-Rank Representation
    Chen, Jinhui
    Yang, Jian
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1432 - 1445
  • [33] Face recognition technology based on low-rank joint sparse representation algorithm
    Wang, Hongsheng
    Cai, Jingjing
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2023, 23 (04) : 2045 - 2058
  • [34] Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining
    Cheng, Wenlong
    Zhao, Mingbo
    Xiong, Naixue
    Chui, Kwok Tai
    SENSORS, 2017, 17 (07)
  • [35] Low-rank representation based discriminative projection for robust feature extraction
    Zhang, Nan
    Yang, Jian
    NEUROCOMPUTING, 2013, 111 : 13 - 20
  • [36] SUBSPACE CLUSTERING AND FEATURE EXTRACTION BASED ON LATENT SPARSE LOW-RANK REPRESENTATION
    Zhao, Li-Na
    Ma, Fang
    Yang, Hong-Wei
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 95 - 100
  • [37] Latent Low-Rank Representation With Weighted Distance Penalty for Clustering
    Fu, Zhiqiang
    Zhao, Yao
    Chang, Dongxia
    Wang, Yiming
    Wen, Jie
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (11) : 6870 - 6882
  • [38] Double Weighted Low-Rank Representation and Its Efficient Implementation
    Zheng, Jianwei
    Lou, Kechen
    Yang, Ping
    Chen, Wanjun
    Wang, Wanliang
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT II, 2019, 11440 : 565 - 577
  • [39] Towards robust subspace recovery via sparsity-constrained latent low-rank representation
    Li, Ping
    Bu, Jiajun
    Yu, Jun
    Chen, Chun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 37 : 46 - 52
  • [40] Low-Rank Representation for Incomplete Data
    Shi, Jiarong
    Yang, Wei
    Yong, Longquan
    Zheng, Xiuyun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014