Plate reader microrheology

被引:1
|
作者
Hawkins, Robert F. [1 ]
Duncan, Gregg A. [1 ,2 ]
机构
[1] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
[2] Univ Maryland, Biophys Program, College Pk, MD 20742 USA
关键词
FLUORESCENCE; VISCOSITY; POLARIZATION; RHEOLOGY; DYNAMICS; DRUG;
D O I
10.1063/5.0031189
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we report the development of a simplified method to perform microrheology to rapidly assess soft materials. This approach uses fluorescence polarization and a plate reader format to measure the rotational diffusion of nanoparticles within a sample of interest. We have established that this technique can be used to characterize a range of soft materials based on the rotational diffusion of nanoparticles in materials with viscosities exceeding 100 cP. Using these fluorescence polarization-based measurements, we describe formalism that enables the estimation of viscosity in polymer solutions and gels composed of polyethylene glycol, hyaluronic acid, and Matrigel after accounting for the length-scale dependent effects of the polymer environment on the nanoparticle rotational diffusion. Using this analysis, we show that the plate reader microrheology measurements of viscosity are in reasonable agreement with traditional particle tracking microrheology. The use of a plate reader format allows this approach to be higher throughput, less technically challenging, and more widely accessible than standard macro- and micro-rheological methods, making it available to non-experts. This approach has potential applications in clinical settings where conventional rheological equipment may not be available to rapidly characterize patient-derived samples.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Fluorescence laser tracking microrheology
    Jonas, M
    So, PTC
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 2261 - 2262
  • [42] Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions 'at a glance'
    Tassieri, Manlio
    Del Giudice, Francesco
    Robertson, Emma J.
    Jain, Neena
    Fries, Bettina
    Wilson, Rab
    Glidle, Andrew
    Greco, Francesco
    Netti, Paolo Antonio
    Maffettone, Pier Luca
    Bicanic, Tihana
    Cooper, Jonathan M.
    SCIENTIFIC REPORTS, 2015, 5
  • [43] Advances in the microrheology of complex fluids
    Waigh, Thomas Andrew
    REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (07)
  • [44] Vibrating microcantilevers: Tools for microrheology
    Belmiloud, N.
    Dufour, I.
    Colin, A.
    Nicu, L.
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 1159 - +
  • [45] Active microrheology in a colloidal glass
    Gruber, M.
    Abade, G. C.
    Puertas, A. M.
    Fuchs, M.
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [46] Thinning and thickening in active microrheology
    Wang, Ting
    Sperl, Matthias
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [47] Microrheology and dynamics of an associative polymer
    Oppong, F. K.
    de Bruyn, J. R.
    EUROPEAN PHYSICAL JOURNAL E, 2010, 31 (01) : 25 - 35
  • [48] Microrheology with Fluorescence Correlation Spectroscopy
    Rathgeber, Silke
    Beauvisage, Hans-Josef
    Chevreau, Hubert
    Willenbacher, Norbert
    Oelschlaeger, Claude
    LANGMUIR, 2009, 25 (11) : 6368 - 6376
  • [49] Critical force in active microrheology
    Gruber, M.
    Puertas, A. M.
    Fuchs, M.
    PHYSICAL REVIEW E, 2020, 101 (01)
  • [50] Application of a microrheology technique to measure the viscosity of disodium cromoglycate liquid crystal
    Duchesne, I.
    Rainville, S.
    Galstian, T.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2016, 630 (01) : 6 - 18