Plate reader microrheology

被引:1
|
作者
Hawkins, Robert F. [1 ]
Duncan, Gregg A. [1 ,2 ]
机构
[1] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
[2] Univ Maryland, Biophys Program, College Pk, MD 20742 USA
关键词
FLUORESCENCE; VISCOSITY; POLARIZATION; RHEOLOGY; DYNAMICS; DRUG;
D O I
10.1063/5.0031189
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we report the development of a simplified method to perform microrheology to rapidly assess soft materials. This approach uses fluorescence polarization and a plate reader format to measure the rotational diffusion of nanoparticles within a sample of interest. We have established that this technique can be used to characterize a range of soft materials based on the rotational diffusion of nanoparticles in materials with viscosities exceeding 100 cP. Using these fluorescence polarization-based measurements, we describe formalism that enables the estimation of viscosity in polymer solutions and gels composed of polyethylene glycol, hyaluronic acid, and Matrigel after accounting for the length-scale dependent effects of the polymer environment on the nanoparticle rotational diffusion. Using this analysis, we show that the plate reader microrheology measurements of viscosity are in reasonable agreement with traditional particle tracking microrheology. The use of a plate reader format allows this approach to be higher throughput, less technically challenging, and more widely accessible than standard macro- and micro-rheological methods, making it available to non-experts. This approach has potential applications in clinical settings where conventional rheological equipment may not be available to rapidly characterize patient-derived samples.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Diffusion microrheology of ferrofluids
    Peredo-Ortiz, R.
    Hernandez-Contreras, M.
    REVISTA MEXICANA DE FISICA, 2018, 64 (01) : 82 - 93
  • [2] Multicolor plate reader fluorescence calibration
    Beal, Jacob
    Telmer, Cheryl A.
    Vignoni, Alejandro
    Boada, Yadira
    Baldwin, Geoff S.
    Hallett, Liam
    Lee, Taeyang
    Selvarajah, Vinoo
    Billerbeck, Sonja
    Brown, Bradley
    Cai, Guo-nan
    Cai, Liang
    Eisenstein, Edward
    Kiga, Daisuke
    Ross, David
    Alperovich, Nina
    Sprent, Noah
    Thompson, Jaclyn
    Young, Eric M.
    Endy, Drew
    Haddock-Angelli, Traci
    SYNTHETIC BIOLOGY, 2022, 7 (01)
  • [3] Soft food microrheology
    Lu, Jiakai
    Corvalan, Carlos M.
    CURRENT OPINION IN FOOD SCIENCE, 2016, 9 : 112 - 116
  • [4] Microrheology
    MacKintosh, FC
    Schmidt, CF
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1999, 4 (04) : 300 - 307
  • [5] Optical tweezers: wideband microrheology
    Preece, Daryl
    Warren, Rebecca
    Evans, R. M. L.
    Gibson, Graham M.
    Padgett, Miles J.
    Cooper, Jonathan M.
    Tassieri, Manlio
    JOURNAL OF OPTICS, 2011, 13 (04)
  • [6] Forced microrheology of active colloids
    Peng, Zhiwei
    Brady, John F.
    JOURNAL OF RHEOLOGY, 2022, 66 (05) : 955 - 972
  • [7] Combining particle tracking microrheology and viscometry for the study of DNA aqueous solutions
    Stefanopoulou, Evdokia
    Papagiannopoulos, Aristeidis
    BIOPOLYMERS, 2020, 111 (06)
  • [8] Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers
    Rich, Jason P.
    Lammerding, Jan
    McKinley, Gareth H.
    Doyle, Patrick S.
    SOFT MATTER, 2011, 7 (21) : 9933 - 9943
  • [9] Magnetic Microrheology of Block Copolymer Solutions
    Kim, Jin Chul
    Seo, Myungeun
    Hillmyer, Marc A.
    Francis, Lorraine F.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) : 11877 - 11883
  • [10] BRIDGING TRIBOLOGY AND MICRORHEOLOGY OF THIN FILMS
    Clasen, Christian
    Kavehpour, H. Pirouz
    McKinley, Gareth H.
    APPLIED RHEOLOGY, 2010, 20 (04) : 5