Faster Geometric Algorithms via Dynamic Determinant Computation

被引:0
|
作者
Fisikopoulos, Vissarion [1 ]
Penaranda, Luis [1 ]
机构
[1] Univ Athens, Dept Informat & Telecommun, Athens, Greece
来源
ALGORITHMS - ESA 2012 | 2012年 / 7501卷
关键词
computational geometry; determinant algorithms; orientation predicate; convex hull; point location; experimental analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Determinant computation is the core procedure in many important geometric algorithms, such as convex hull computations and point locations. As the dimension of the computation space grows, a higher percentage of the computation time is consumed by these predicates. In this paper we study the sequences of determinants that appear in geometric algorithms. We use dynamic determinant algorithms to speed-up the computation of each predicate by using information from previously computed predicates. We propose two dynamic determinant algorithms with quadratic complexity when employed in convex hull computations, and with linear complexity when used in point location problems. Moreover, we implement them and perform an experimental analysis. Our implementations outperform the state-of-the-art determinant and convex hull implementations in most of the tested scenarios, as well as giving a speed-up of 78 times in point location problems.
引用
收藏
页码:443 / 454
页数:12
相关论文
共 50 条
  • [11] Certification of numerical computation of the sign of the determinant of a matrix
    Pan, VY
    Yu, Y
    ALGORITHMICA, 2001, 30 (04) : 708 - 724
  • [12] Faster Algorithms for Computing Plurality Points
    De Berg, Mark
    Gudmundsson, Joachim
    Mehr, Mehran
    ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (03)
  • [13] A Faster Convex-Hull Algorithm via Bucketing
    Gamby, Ask Neve
    Katajainen, Jyrki
    ANALYSIS OF EXPERIMENTAL ALGORITHMS, SEA2 2019, 2019, 11544 : 473 - 489
  • [14] Geometric algorithms for layered manufacturing
    Janardan, R
    Smid, M
    GEOMETRIC AND ALGORITHMIC ASPECTS OF COMPUTER-AIDED DESIGN AND MANUFACTURING, 2005, 67 : 189 - 220
  • [15] EFFICIENT GEOMETRIC ALGORITHMS ON THE EREW PRAM
    CHEN, DZ
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1995, 6 (01) : 41 - 47
  • [16] Numerical Robustness in Geometric Computation: An Expository Summary
    Mei, Gang
    Tipper, John C.
    Xu, Nengxiong
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (06): : 2717 - 2727
  • [17] GEOMETRIC ALGORITHMS FOR LINEAR-PROGRAMMING
    IMAI, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1993, E76A (03) : 259 - 264
  • [18] Realistic input models for geometric algorithms
    de Berg, M
    Katz, MJ
    van der Stappen, AF
    Vleugels, J
    ALGORITHMICA, 2002, 34 (01) : 81 - 97
  • [19] GEOMETRIC MODELLING AND ALGORITHMS FOR BINARY MIXTURES
    Lacolle, B.
    Szafran, N.
    Valentin, P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1994, 4 (03) : 243 - 260
  • [20] A tutorial for designing flexible geometric algorithms
    Kapoor, V
    Kühl, D
    Wolff, A
    ALGORITHMICA, 2002, 33 (01) : 52 - 70