Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase-osmolytes interaction

被引:14
|
作者
Ghodselahi, T. [1 ,2 ]
Hoornam, S. [1 ,2 ,3 ]
Vesaghi, M. A. [4 ]
Ranjbar, B. [5 ]
Azizi, A. [5 ]
Mobasheri, H. [6 ,7 ]
机构
[1] Nano Mabna Iranian Inc, Tehran, Iran
[2] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran
[3] Islamic Azad Univ, Cent Tehran Branch, Dept Sci, Tehran, Iran
[4] Sharif Univ Technol, Dept Phys, Tehran, Iran
[5] Tarbiat Modares Univ, Dept Biophys, Tehran, Iran
[6] Univ Tehran, Inst Biochem & Biophys, Lab Membrane Biophys, Tehran, Iran
[7] Univ Tehran, Biomat Res Inst BRC, Tehran, Iran
关键词
Localized Surface Plasmon Resonance; Sensor chip of Au NPs; RF-sputtering and RF-PECVD; Biosensor; Pseudomonas cepacia lipase; Osmolytes; SPECTROSCOPY; ABSORPTION; SORBITOL; ARRAYS; SIZE;
D O I
10.1016/j.apsusc.2014.06.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO2 substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was obtained by Mie theory modeling of LSPR peaks. This modeling stated that the present LSPR sensor chip has sensitivity as high as wavelength shift of 175 nm per refractive index. Moreover, the detection of such weakly interaction between bio-molecules cannot be achieved by other analysis. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 144
页数:7
相关论文
共 50 条
  • [21] Limitation of a localized surface plasmon resonance sensor for Salmonella detection
    Fu, Junxue
    Park, Bosoon
    Zhao, Yiping
    SENSORS AND ACTUATORS B-CHEMICAL, 2009, 141 (01): : 276 - 283
  • [22] Detection of Biomolecular Binding Through Enhancement of Localized Surface Plasmon Resonance (LSPR) by Gold Nanoparticles
    Kim, Hyung Min
    Jin, Seung Min
    Lee, Seok Kee
    Kim, Min-Gon
    Shin, Yong-Beom
    SENSORS, 2009, 9 (04): : 2334 - 2344
  • [23] Label-free protein detection via gold nanoparticles and localized surface plasmon resonance
    Zhu, S. L.
    Zhang, J. B.
    Yue, Lanry Y. L.
    Hartono, D.
    Liu, A. Q.
    NEMS/MEMS TECHNOLOGY AND DEVICES, 2009, 74 : 95 - +
  • [24] Review of surface plasmon resonance and localized surface plasmon resonance sensor?
    Yong Chen
    Hai Ming
    Photonic Sensors, 2012, 2 (1) : 37 - 49
  • [25] Fiber optic localized surface plasmon resonance hydrogen sensor based on gold nanoparticles capped with palladium
    Kim, Hyeong-Min
    Kim, Hyo-Jun
    Yang, Seung-Chul
    Park, Jae-Hyoung
    Lee, Seung-Ki
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 111 : 281 - 288
  • [26] Colorimetric determination of nabumetone based on localized surface plasmon resonance of functionalized gold nanoparticles as a chemical sensor
    Khodaveisi, Javed
    Dadfarnia, Shayessteh
    Shabani, Ali Mohammad Haji
    Saberi, Dariush
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 239 : 1300 - 1306
  • [27] Investigation of Performance Parameters of Spherical Gold Nanoparticles in Localized Surface Plasmon Resonance Biosensing
    Semwal, Vivek
    Jensen, Oliver Rishoj
    Bang, Ole
    Janting, Jakob
    MICROMACHINES, 2023, 14 (09)
  • [28] Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance
    Kim, Hyeong-Min
    Jeong, Dae Hong
    Lee, Ho-Young
    Park, Jae-Hyoung
    Lee, Seung-Ki
    OPTICS AND LASER TECHNOLOGY, 2019, 114 : 171 - 178
  • [29] Saturable Scattering of Localized Surface Plasmon Resonance in a Single Gold Nanoparticle
    Su, Tung-Yu
    Yonemaru, Yasuo
    Yamanaka, Masahito
    Lee, Ming-Ying
    Lee, Hsuan
    Kawata, Satoshi
    Fujita, Katsumasa
    Chu, Shi-Wei
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES X, 2012, 8457
  • [30] Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles
    Wan, Miao
    Luo, Pengfei
    Jin, Jiayi
    Xing, Jiong
    Wang, Zhiyong
    Wong, Stephen T. C.
    SENSORS, 2010, 10 (07) : 6477 - 6487