ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS

被引:31
作者
Fazly, Mostafa [1 ]
Wei, Juncheng
机构
[1] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
基金
加拿大自然科学与工程研究理事会;
关键词
R-N; CLASSIFICATION; LAPLACIAN;
D O I
10.1353/ajm.2017.0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify finite Morse index solutions of the following nonlocal Lane-Emden equation (-Delta)(s)u = vertical bar u vertical bar(p-1)u R-n for 1 < s < 2 via a novel monotonicity formula. For local cases s = 1 and s = 2 this classification was provided by Farina in 2007 and Davila, Dupaigne, Wang, and Wei in 2014, respectively. Moreover, for the nonlocal case 0 < s < 1 finite Morse index solutions are classified by Davila, Dupaigne, and Wei in their 2014 preprint.
引用
收藏
页码:433 / 460
页数:28
相关论文
共 21 条
[11]  
Gidas B., 1981, Commun. Partial Differ. Equ., V6, P883, DOI 10.1080/03605308108820196
[12]   SPECTRAL THEORY OF OPERATOR (P2+M2)1/2 - ZE2-R [J].
HERBST, IW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :285-294
[13]  
JOSEPH DD, 1973, ARCH RATION MECH AN, V49, P241
[14]  
Li YY, 2004, J EUR MATH SOC, V6, P153
[15]   A classification of solutions of a conformally invariant fourth order equation in Rn [J].
Lin, CS .
COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (02) :206-231
[16]  
PACARD F, 1992, HOUSTON J MATH, V18, P621
[17]   LOCAL INTEGRATION BY PARTS AND POHOZAEV IDENTITIES FOR HIGHER ORDER FRACTIONAL LAPLACIANS [J].
Ros-Oton, Xavier ;
Serra, Joaquim .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) :2131-2150
[18]   Classification of solutions of higher order conformally invariant equations [J].
Wei, JC ;
Xu, XW .
MATHEMATISCHE ANNALEN, 1999, 313 (02) :207-228
[19]   Sharp constants in the Hardy-Rellich inequalities [J].
Yafaev, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) :121-144
[20]  
YANG R, PREPRINT