Simulation Study of Single Quantum Channel BB84 Quantum Key Distribution

被引:0
作者
Foong, Oi-Mean [1 ]
Low, Tang Jung [1 ]
Hong, Kah Wing [1 ]
机构
[1] Univ Teknol PETRONAS, Comp & Informat Sci Dept, Bandar Seri Iskandar 31750, Tronoh, Malaysia
来源
IT CONVERGENCE AND SECURITY 2017, VOL 2 | 2018年 / 450卷
关键词
Quantum Key Distribution; BB84; Cryptosystem; QBER; Raw key efficiencies; COMPUTERS; CRYPTOGRAPHY; SECURITY;
D O I
10.1007/978-981-10-6454-8_21
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing information being shared online, the vast potential for cybercrime is a serious issue for individuals and businesses. Quantum key distribution (QKD) provides a way for distribution of secure key between two communicating parties. However, the current Quantum Key Distribution method, BB84 protocol, is prone to several weaknesses. These are Photon-Number-Splitting (PNS) attack, high Quantum Bit Error Rate (QBER), and low raw key efficiency. Thus, the objectives of this paper are to investigate the impacts of BB84 protocol towards QBER and raw key efficiencies in single quantum channel. Experiments were set up using a QKD simulator that was developed in Java NetBeans. The simulation study has reaffirmed the results of QBER and raw key efficiencies for the single quantum channel BB84 protocol.
引用
收藏
页码:159 / 167
页数:9
相关论文
共 50 条
[31]   Demonstrating BB84 Quantum Key Distribution in the Physical Layer of an Optical Fiber Based System [J].
Czermann, Marton ;
Trocsanyi, Peter ;
Kis, Zsolt ;
Kovacs, Benedek ;
Bacsardi, Laszlo .
INFOCOMMUNICATIONS JOURNAL, 2021, 13 (03) :45-55
[32]   A BB84 free space quantum key distribution link implemented with modulating retro-reflectors [J].
Rabinovich, William S. ;
Mahon, Rita ;
Ferraro, Mike S. ;
Goetz, Peter G. ;
Bashkansky, Mark ;
Freeman, Rachel E. ;
Murphy, James L. ;
Reintjes, John ;
Freeman, Rachel .
FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXX, 2018, 10524
[33]   Quantum Bit Commitment Combining with BB84 Protocol [J].
Zhang, Linxi ;
Zhu, Changhua ;
Zhao, Nan ;
Pei, Changxing .
ELECTRICAL AND CONTROL ENGINEERING & MATERIALS SCIENCE AND MANUFACTURING, 2016, :291-298
[34]   Thwarting the photon-number-splitting attack with entanglement-enhanced BB84 quantum key distribution [J].
Sabottke, Carl F. ;
Richardson, Chris D. ;
Anisimov, Petr M. ;
Yurtsever, Ulvi ;
Lamas-Linares, Antia ;
Dowling, Jonathan P. .
NEW JOURNAL OF PHYSICS, 2012, 14
[35]   On the secrecy of a simple and effective implementation of BB84 quantum cryptography protocol [J].
Molotkov, S. N. .
LASER PHYSICS LETTERS, 2019, 16 (07)
[36]   Estimating Interception Density in the BB84 Protocol: A Study with a Noisy Quantum Simulator [J].
Fiorini, Francesco ;
Pagano, Michele ;
Garroppo, Rosario Giuseppe ;
Osele, Antonio .
FUTURE INTERNET, 2024, 16 (08)
[37]   Experimental Side Channel Analysis of BB84 QKD Source [J].
Biswas, Ayan ;
Banerji, Anindya ;
Chandravanshi, Pooja ;
Kumar, Rupesh ;
Singh, Ravindra P. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2021, 57 (06)
[38]   Simulation algorithm on the quantum BB84 protocol based on Monte Carlo method in classical computer environment [J].
Li, Jian ;
Li, Leilei ;
Li, Hengji ;
Wang, Na ;
Chen, Xiubo ;
Yang, Yuguang .
QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
[39]   Development of Quantum Protocol Modification CSLOE-2022, Increasing the Cryptographic Strength of Classical Quantum Protocol BB84 [J].
Cherckesova, Larissa, V ;
Safaryan, Olga A. ;
Beskopylny, Alexey N. ;
Revyakina, Elena .
ELECTRONICS, 2022, 11 (23)
[40]   A Novel Approach Based on Quantum Key Distribution Using BB84 and E91 Protocol for Resilient Encryption and Eavesdropper Detection [J].
Ul Ain, Noor ;
Waqar, Muhammad ;
Bilal, Anas ;
Kim, Ajung ;
Ali, Haider ;
Tariq, Umair Ullah ;
Nadeem, Muhammad Shahroz .
IEEE ACCESS, 2025, 13 :32819-32833