Robust System Identification of Continuous-Time Model from Frequency Response Function Data

被引:0
作者
Tang, Wei [1 ]
Shi, Zhongke [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi Provinc, Peoples R China
来源
2011 9TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2011) | 2011年
基金
高等学校博士学科点专项科研基金;
关键词
system identification; continuous-time model; numerical conditioning; matrix orthogonal polynomial basis; DOMAIN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the numerical conditioning problem that arises in the continuous-time system identification case. To solve this problem, a new frequency domain weighted least squares estimator using matrix orthogonal polynomial basis (MOPB) is proposed, which allow us to model transfer function matrix without vector operation, and yield perfect condition number. The key idea is to expand the matrix fraction description model on MOPB. The construction of MOPB is described in this paper and the efficacy of this method is illustrated with a numerical example.
引用
收藏
页码:661 / 665
页数:5
相关论文
共 50 条
[21]   AC-2306327-0000001 Continuous-time model identification of the subglottal system [J].
Fontanet, Javier G. ;
Yuz, Juan I. ;
Garnier, Hugues ;
Morales, Arturo ;
Cortes, Juan Pablo ;
Zanartu, Matias .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
[22]   Continuous-time system identification with neural networks: Model structures and fitting criteria [J].
Forgione, Marco ;
Piga, Dario .
EUROPEAN JOURNAL OF CONTROL, 2021, 59 :69-81
[23]   A Subalgebraic Procedure for System Identification of a Continuous-Time Polynomial System [J].
van Schuppen, Jan H. ;
Xi, Kaihua ;
Nemcova, Jana .
IFAC PAPERSONLINE, 2018, 51 (15) :395-400
[24]   Continuous-time System Identification of a Flexible Cantilever Beam [J].
Pan, Siqi ;
Quoc Chi Nguyen ;
Van Thuat Nguyen ;
Welsh, James S. .
5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, :868-873
[25]   Identification of continuous-time models for nonlinear dynamic systems from discrete data [J].
Guo, Yuzhu ;
Guo, Ling Zhong ;
Billings, Stephen A. ;
Wei, Hua-Liang .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (12) :3044-3054
[26]   CONTINUOUS-TIME APPROACHES TO SYSTEM-IDENTIFICATION - A SURVEY [J].
UNBEHAUEN, H ;
RAO, GP .
AUTOMATICA, 1990, 26 (01) :23-35
[27]   Frequency domain identification of continuous-time output-error models with time-delay from relay feedback tests [J].
Chen, Fengwei ;
Garnier, Hugues ;
Gilson, Marion ;
Zhuan, Xiangtao .
AUTOMATICA, 2018, 98 :180-189
[28]   IDENTIFICATION OF LINEAR AND NONLINEAR CONTINUOUS-TIME MODELS FROM SAMPLED-DATA SETS [J].
TSANG, KM ;
BILLINGS, SA .
JOURNAL OF SYSTEMS ENGINEERING, 1995, 5 (04) :249-267
[29]   Continuous-time model identification: application on a behavioural (miLife) study [J].
Bekiroglu, Korkut ;
Russell, Michael A. ;
Lagoa, Constantino ;
Su, Rong ;
Sznaier, Mario ;
Lanza, Stephanie T. ;
Odgers, Candice L. .
INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (09) :2318-2329
[30]   An asymptotically optimal indirect approach to continuous-time system identification [J].
Gonzalez, Rodrigo A. ;
Rojas, Cristian R. ;
Welsh, James S. .
2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, :638-643