More results on Simpson's type inequality through convexity for twice differentiable continuous mappings

被引:24
作者
Hussain, Sabir [1 ]
Qaisar, Shahid [2 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, POB 6644, Buraydah 51452, Saudi Arabia
[2] COMSATS Inst Informat Technol, Dept Math, Sahiwal, Pakistan
关键词
Simpson's inequality; Strongly s-convex function; Integral identity; Holder's integral inequality;
D O I
10.1186/s40064-016-1683-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Our aim in this article is to incorporate the notion of "strongly s-convex function" and prove a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder's inequality are considered.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 16 条
[11]  
Qaisar S, 2014, INT J ANAL APPL, V5, P115
[12]   A generalizations of Simpson's type inequality for differentiable functions using (α, m)-convex functions and applications [J].
Qaisar, Shahid ;
He, Chuanjiang ;
Hussain, Sabir .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[13]   Some integral inequalities of Simpson type for GA-ε-convex functions [J].
Qi, Feng ;
Xi, Bo-Yan .
GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (04) :775-788
[14]   On new inequalities of Simpson's type for s-convex functions [J].
Sarikaya, Mehmet Zeki ;
Set, Erhan ;
Ozdemir, M. Emin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (08) :2191-2199
[15]  
Wang Y, 2013, FACTA UNIV-SER MATH, V28, P151
[16]  
Xi Bo-Yan, 2013, Advanced Studies in Contemporary Mathematics, V23, P559