More results on Simpson's type inequality through convexity for twice differentiable continuous mappings

被引:23
作者
Hussain, Sabir [1 ]
Qaisar, Shahid [2 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, POB 6644, Buraydah 51452, Saudi Arabia
[2] COMSATS Inst Informat Technol, Dept Math, Sahiwal, Pakistan
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Simpson's inequality; Strongly s-convex function; Integral identity; Holder's integral inequality;
D O I
10.1186/s40064-016-1683-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Our aim in this article is to incorporate the notion of "strongly s-convex function" and prove a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder's inequality are considered.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 16 条
  • [11] Qaisar S, 2014, INT J ANAL APPL, V5, P115
  • [12] A generalizations of Simpson's type inequality for differentiable functions using (α, m)-convex functions and applications
    Qaisar, Shahid
    He, Chuanjiang
    Hussain, Sabir
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [13] Some integral inequalities of Simpson type for GA-ε-convex functions
    Qi, Feng
    Xi, Bo-Yan
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (04) : 775 - 788
  • [14] On new inequalities of Simpson's type for s-convex functions
    Sarikaya, Mehmet Zeki
    Set, Erhan
    Ozdemir, M. Emin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (08) : 2191 - 2199
  • [15] Wang Y, 2013, FACTA UNIV-SER MATH, V28, P151
  • [16] Xi Bo-Yan, 2013, Advanced Studies in Contemporary Mathematics, V23, P559