Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli

被引:93
作者
Faraldo-Gómez, JD [1 ]
Roux, B [1 ]
机构
[1] Cornell Univ, Weill Med Coll, Dept Biochem, New York, NY 10021 USA
关键词
ion channel; ClC channel; electrostatics; Poisson-Boltzmann; helix dipole effect;
D O I
10.1016/j.jmb.2004.04.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structural determinants of electrostatics of ion stabilization within EcClC, a ClC-type chloride channel homologue from Escherichia coli, are studied using a continuum dielectric approximation. Specifically, the ion occupancy is investigated in the wild-type protein and a mutant thereof, and the contribution to the electrostatic binding free energy of local and non-local interactions is characterized at the single-residue level. This analysis shows that, in spite of the desolvation cost and the strong ion-ion repulsion, all previously reported binding sites can be occupied simultaneously. The stabilizing effect of the protein arises from hydrogen bonding as well as from longer-range favorable interactions, such as with the strictly conserved Lys131 side-chain. The latter is involved in the stabilization of the conserved GSGIP motif that delimits two of the binding sites. Interestingly, an additional low-affinity binding site, mediated by a structurally analogous motif including the side-chain of Arg340, can be identified on the extracellular side of the permeation pathway. Finally, it is shown that, in contrast to K-channels, and in analogy to the SBP/PBP sulfate/phosphate-binding proteins, the contribution of helix macro-dipoles to chloride binding in EcClC is only marginal. (C) 2004 Published by Elsevier Ltd.
引用
收藏
页码:981 / 1000
页数:20
相关论文
共 67 条
[1]   Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels [J].
Accardi, A ;
Kolmakova-Partensky, L ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (02) :109-119
[2]   Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels [J].
Accardi, A ;
Miller, C .
NATURE, 2004, 427 (6977) :803-807
[3]   Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties [J].
Alexov, EG ;
Gunner, MR .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2075-2093
[4]  
[Anonymous], 1985, ION SOLVATION
[5]  
[Anonymous], 2012, Introduction to protein structure
[6]   Ion permeation mechanism of the potassium channel [J].
Åqvist, J ;
Luzhkov, V .
NATURE, 2000, 404 (6780) :881-884
[7]   DIPOLES LOCALIZED AT HELIX TERMINI OF PROTEINS STABILIZE CHARGES [J].
AQVIST, J ;
LUECKE, H ;
QUIOCHO, FA ;
WARSHEL, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (05) :2026-2030
[8]   Atomic radii for continuum electrostatics calculations on nucleic acids [J].
Banavali, NK ;
Roux, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (42) :11026-11035
[9]   Free-energy determinants of alpha-helix insertion into lipid bilayers [J].
BenTal, N ;
BenShaul, A ;
Nicholls, A ;
Honig, B .
BIOPHYSICAL JOURNAL, 1996, 70 (04) :1803-1812
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242