Computing the power profiles for an Airborne Wind Energy system based on large-scale wind data

被引:17
作者
Malz, E. C. [1 ]
Verendel, V. [2 ]
Gros, S. [3 ]
机构
[1] Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Comp Sci & Engn, Gothenburg, Sweden
[3] Norwegian Univ Sci & Technol, Dept Engn Cybernet, Trondheim, Norway
基金
欧盟地平线“2020”;
关键词
Airborne wind energy; Optimal control; Big data; Homotopy path strategy; Machine learning; REGRESSION; MODEL; OPTIMIZATION; SELECTION;
D O I
10.1016/j.renene.2020.06.056
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Airborne Wind Energy (AWE) is a new power technology that harvests wind energy at high altitudes using tethered wings. Studying the power potential of the system at a given location requires evaluating the local power production profile of the AWE system. As the optimal operational AWE system altitude depends on complex trade-offs, a commonly used technique is to formulate the power production computation as an Optimal Control Problem (OCP). In order to obtain an annual power production profile, this OCP has to be solved sequentially for the wind data for each time point. This can be computationally costly due to the highly nonlinear and complex AWE system model. This paper proposes a method how to reduce the computational effort when using an OCP for power computations of large-scale wind data. The method is based on homotopy-path-following strategies, which make use of the similarities between successively solved OCPs. Additionally, different machine learning regression models are evaluated to accurately predict the power production in the case of very large data sets. The methods are illustrated by computing a three-month power profile for an AWE drag-mode system. A significant reduction in computation time is observed, while maintaining good accuracy. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:766 / 778
页数:13
相关论文
共 38 条
[1]  
Andersson J.A.E., 2018, MATH PROGRAMMING COM, DOI [10.1007/s12532-018-0139-4., DOI 10.1007/S12532-018-0139-4.]
[2]   Airborne wind energy: Optimal locations and variability [J].
Archer, Cristina L. ;
Delle Monache, Luca ;
Rife, Daran L. .
RENEWABLE ENERGY, 2014, 64 :180-186
[3]   Airborne wind energy resource analysis [J].
Bechtle, Philip ;
Schelbergen, Mark ;
Schmehl, Roland ;
Zillmann, Udo ;
Watson, Simon .
RENEWABLE ENERGY, 2019, 141 :1103-1116
[4]  
Biegler LT, 2010, MOS-SIAM SER OPTIMIZ, V10, pXIII, DOI 10.1137/1.9780898719383
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[7]   Analysis of the maximum efficiency of kite-power systems [J].
Costello, S. ;
Costello, C. ;
Francois, G. ;
Bonvin, D. .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (05)
[8]  
Deuflhard P., 2005, Newton Methods for Nonlinear Problems
[9]   The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) [J].
Gelaro, Ronald ;
McCarty, Will ;
Suarez, Max J. ;
Todling, Ricardo ;
Molod, Andrea ;
Takacs, Lawrence ;
Randles, Cynthia A. ;
Darmenov, Anton ;
Bosilovich, Michael G. ;
Reichle, Rolf ;
Wargan, Krzysztof ;
Coy, Lawrence ;
Cullather, Richard ;
Draper, Clara ;
Akella, Santha ;
Buchard, Virginie ;
Conaty, Austin ;
da Silva, Arlindo M. ;
Gu, Wei ;
Kim, Gi-Kong ;
Koster, Randal ;
Lucchesi, Robert ;
Merkova, Dagmar ;
Nielsen, Jon Eric ;
Partyka, Gary ;
Pawson, Steven ;
Putman, William ;
Rienecker, Michele ;
Schubert, Siegfried D. ;
Sienkiewicz, Meta ;
Zhao, Bin .
JOURNAL OF CLIMATE, 2017, 30 (14) :5419-5454
[10]   Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system [J].
Goransson, Lisa ;
Goop, Joel ;
Odenberger, Mikael ;
Johnsson, Filip .
APPLIED ENERGY, 2017, 197 :230-240