Quantitative Comparison of Conventional and t-SNE-guided Gating Analyses

被引:53
作者
Eshghi, Shadi Toghi [1 ]
Au-Yeung, Amelia [1 ]
Takahashi, Chikara [1 ]
Bolen, Christopher R. [2 ]
Nyachienga, Maclean N. [1 ]
Lear, Sean P. [1 ]
Green, Cherie [1 ]
Mathews, W. Rodney [1 ]
O'Gorman, William E. [1 ]
机构
[1] Genentech Inc, OMNI Biomarker Dev, San Francisco, CA 94080 USA
[2] Genentech Inc, Bioinformat, San Francisco, CA 94080 USA
关键词
cyTOF; t-SNE; cytometry informatics; dimensionality reduction; immunophenotyping; high-dimensional cytometry; FLOW; VISUALIZATION; CELLS;
D O I
10.3389/fimmu.2019.01194
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Dimensionality reduction using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm has emerged as a popular tool for visualizing high-parameter single-cell data. While this approach has obvious potential for data visualization it remains unclear how t-SNE analysis compares to conventional manual hand-gating in stratifying and quantitating the frequency of diverse immune cell populations. We applied a comprehensive 38-parameter mass cytometry panel to human blood and compared the frequencies of 28 immune cell subsets using both conventional bivariate and t-SNE-guided manual gating. t-SNE analysis was capable of stratifying every general cellular lineage and most sub-lineages with high correlation between conventional and t-SNE-guided cell frequency calculations. However, specific immune cell subsets delineated by the manual gating of continuous variables were not fully separated in t-SNE space thus causing discrepancies in subset identification and quantification between these analytical approaches. Overall, these studies highlight the consistency between t-SNE and conventional hand-gating in stratifying general immune cell lineages while demonstrating that particular cell subsets defined by conventional manual gating may be intermingled in t-SNE space.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[3]  
Becht E., 2018, Evaluation of UMAP as an alternative to t-SNE for single-cell data, V20, DOI DOI 10.1101/298430
[4]   Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline [J].
Chen, Hao ;
Lau, Mai Chan ;
Wong, Michael Thomas ;
Newell, Evan W. ;
Poidinger, Michael ;
Chen, Jinmiao .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (09)
[5]   CD161 Defines a Transcriptional and Functional Phenotype across Distinct Human T Cell Lineages [J].
Fergusson, Joannah R. ;
Smith, Kira E. ;
Fleming, Vicki M. ;
Rajoriya, Neil ;
Newell, Evan W. ;
Simmons, Ruth ;
Marchi, Emanuele ;
Bjorkander, Sophia ;
Kang, Yu-Hoi ;
Swadling, Leo ;
Kurioka, Ayako ;
Sahgal, Natasha ;
Lockstone, Helen ;
Baban, Dilair ;
Freeman, Gordon J. ;
Sverremark-Ekstrom, Eva ;
Davis, Mark M. ;
Davenport, Miles P. ;
Venturi, Vanessa ;
Ussher, James E. ;
Willberg, Christian B. ;
Klenerman, Paul .
CELL REPORTS, 2014, 9 (03) :1075-1088
[6]   Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium [J].
Finak, Greg ;
Langweiler, Marc ;
Jaimes, Maria ;
Malek, Mehrnoush ;
Taghiyar, Jafar ;
Korin, Yael ;
Raddassi, Khadir ;
Devine, Lesley ;
Obermoser, Gerlinde ;
Pekalski, Marcin L. ;
Pontikos, Nikolas ;
Diaz, Alain ;
Heck, Susanne ;
Villanova, Federica ;
Terrazzini, Nadia ;
Kern, Florian ;
Qian, Yu ;
Stanton, Rick ;
Wang, Kui ;
Brandes, Aaron ;
Ramey, John ;
Aghaeepour, Nima ;
Mosmann, Tim ;
Scheuermann, Richard H. ;
Reed, Elaine ;
Palucka, Karolina ;
Pascual, Virginia ;
Blomberg, Bonnie B. ;
Nestle, Frank ;
Nussenblatt, Robert B. ;
Brinkman, Ryan Remy ;
Gottardo, Raphael ;
Maecker, Holden ;
Mccoy, J. Philip .
SCIENTIFIC REPORTS, 2016, 6
[7]   OpenCyto: An Open Source Infrastructure for Scalable, Robust, Reproducible, and Automated, End-to-End Flow Cytometry Data Analysis [J].
Finak, Greg ;
Frelinger, Jacob ;
Jiang, Wenxin ;
Newell, Evan W. ;
Ramey, John ;
Davis, Mark M. ;
Kalams, Spyros A. ;
De Rosa, Stephen C. ;
Gottardo, Raphael .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
[8]   Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species [J].
Guilliams, Martin ;
Dutertre, Charles-Antoine ;
Scott, Charlotte L. ;
McGovern, Naomi ;
Sichien, Dorine ;
Chakarov, Svetoslav ;
Van Gassen, Sofie ;
Chen, Jinmiao ;
Poidinger, Michael ;
De Prijck, Sofie ;
Tavernier, Simon J. ;
Low, Ivy ;
Irac, Sergio Erdal ;
Mattar, Citra Nurfarah ;
Sumatoh, Hermi Rizal ;
Low, Gillian Hui Ling ;
Chung, Tam John Kit ;
Chan, Dedrick Kok Hong ;
Tan, Ker Kan ;
Hon, Tony Lim Kiat ;
Fossum, Even ;
Bogen, Bjame ;
Choolani, Mahesh ;
Chan, Jerry Kok Yen ;
Larbi, Anis ;
Luche, Herve ;
Henri, Sandrine ;
Saeys, Yvan ;
Newell, Evan William ;
Lambrecht, Bart N. ;
Malissen, Bernard ;
Ginhoux, Florent .
IMMUNITY, 2016, 45 (03) :669-684
[9]   flowCore: a Bioconductor package for high throughput flow cytometry [J].
Hahne, Florian ;
LeMeur, Nolwenn ;
Brinkman, Ryan R. ;
Ellis, Byron ;
Haaland, Perry ;
Sarkar, Deepayan ;
Spidlen, Josef ;
Strain, Errol ;
Gentleman, Robert .
BMC BIOINFORMATICS, 2009, 10
[10]  
Konstorum Anna, 2018, BIORXIV, DOI [10.1101/273862, DOI 10.1101/273862]