DNA Assembly in 3D Printed Fluidics

被引:37
|
作者
Patrick, William G. [1 ]
Nielsen, Alec A. K. [2 ]
Keating, Steven J. [1 ,3 ]
Levy, Taylor J. [1 ]
Wang, Wei [1 ]
Rivera, Jaime J. [2 ]
Mondragn-Palomino, Octavio [2 ]
Carr, Peter A. [4 ]
Voigt, Christopher A. [2 ]
Oxman, Neri [1 ]
Kong, David S. [4 ]
机构
[1] MIT, Media Lab, Sch Architecture & Planning, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Lincoln Lab, Lexington, MA 02173 USA
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
GENE SYNTHESIS; SYNTHETIC BIOLOGY; ESCHERICHIA-COLI; CHIP; OPTIMIZATION; SEQUENCE; DEVICES; DESIGN; LAB;
D O I
10.1371/journal.pone.0143636
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro-and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $ 5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] 3D printed upper limb prosthetics
    Vujaklija, Ivan
    Farina, Dario
    EXPERT REVIEW OF MEDICAL DEVICES, 2018, 15 (07) : 505 - 512
  • [22] A Review of 3D Printed Bone Implants
    Li, Zhaolong
    Wang, Qinghai
    Liu, Guangdong
    MICROMACHINES, 2022, 13 (04)
  • [23] 3D printed microfluidics for biological applications
    Ho, Chee Meng Benjamin
    Sum Huan Ng
    Li, King Ho Holden
    Yoon, Yong-Jin
    LAB ON A CHIP, 2015, 15 (18) : 3627 - 3637
  • [24] Computational optimization of a 3D printed collimator
    Islam, Fahima
    Lin, Jiao
    Huegle, Thomas
    Lumsden, Ian
    Anderson, David
    Elliott, Amy
    Haberl, Bianca
    Granroth, Garrett
    JOURNAL OF NEUTRON RESEARCH, 2020, 22 (2-3) : 155 - 168
  • [25] 3D Printed e-Tongue
    Gaal, Gabriel
    da Silva, Tatiana A.
    Gaal, Vladimir
    Hensel, Rafael C.
    Amaral, Lucas R.
    Rodrigues, Varlei
    Riul, Antonio, Jr.
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [26] Exploitation of Forming of the 3D Printed Materials
    Mantyjarvi, Kari
    Iso-Junno, Terho
    Mustakangas, Aappo
    Jokelainen, Tero
    Keskitalo, Markku
    Jarvenpaa, Antti
    PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2019), 2019, 2113
  • [27] Plasmonic Sensing with 3D Printed Optics
    Hinman, Samuel S.
    McKeating, Kristy S.
    Cheng, Quan
    ANALYTICAL CHEMISTRY, 2017, 89 (23) : 12626 - 12630
  • [28] 3D Printed Hydrogel Soft Actuators
    Zolfagharian, Ali
    Kouzani, Abbas Z.
    Khoo, Sui Yang
    Gibson, Ian
    Kaynak, Akif
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2272 - 2277
  • [29] Chemistry from 3D printed objects
    Hartings, Matthew R.
    Ahmed, Zeeshan
    NATURE REVIEWS CHEMISTRY, 2019, 3 (05) : 305 - 314
  • [30] 3D Printed Micro Free-Flow Electrophoresis Device
    Anciaux, Sarah K.
    Geiger, Matthew
    Bowser, Michael T.
    ANALYTICAL CHEMISTRY, 2016, 88 (15) : 7675 - 7682