DNA Assembly in 3D Printed Fluidics

被引:37
|
作者
Patrick, William G. [1 ]
Nielsen, Alec A. K. [2 ]
Keating, Steven J. [1 ,3 ]
Levy, Taylor J. [1 ]
Wang, Wei [1 ]
Rivera, Jaime J. [2 ]
Mondragn-Palomino, Octavio [2 ]
Carr, Peter A. [4 ]
Voigt, Christopher A. [2 ]
Oxman, Neri [1 ]
Kong, David S. [4 ]
机构
[1] MIT, Media Lab, Sch Architecture & Planning, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Lincoln Lab, Lexington, MA 02173 USA
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
GENE SYNTHESIS; SYNTHETIC BIOLOGY; ESCHERICHIA-COLI; CHIP; OPTIMIZATION; SEQUENCE; DEVICES; DESIGN; LAB;
D O I
10.1371/journal.pone.0143636
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro-and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $ 5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] An open source toolkit for 3D printed fluidics
    Price, Adam J. N.
    Capel, Andrew J.
    Lee, Robert J.
    Pradel, Patrick
    Christie, Steven D. R.
    JOURNAL OF FLOW CHEMISTRY, 2021, 11 (01) : 37 - 51
  • [2] Hierarchical Composites Patterned via 3D Printed Cellular Fluidics
    Gemeda, Hawi B.
    Dudukovic, Nikola A.
    Zhu, Cheng
    Guell Izard, Anna
    Gongora, Aldair E.
    Deotte, Joshua R.
    Davis, Johnathan T.
    Duoss, Eric B.
    Fong, Erika J.
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (20):
  • [3] 3D Printed Microfluidics
    Nielsen, Anna V.
    Beauchamp, Michael J.
    Nordin, Gregory P.
    Woolley, Adam T.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 13, 2020, 13 : 45 - 65
  • [4] 3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow
    Valotta, Alessia
    Maier, Manuel C.
    Soritz, Sebastian
    Pauritsch, Magdalena
    Koenig, Michael
    Brouczek, Dominik
    Schwentenwein, Martin
    Gruber-Woelfler, Heidrun
    JOURNAL OF FLOW CHEMISTRY, 2021, 11 (03) : 675 - 689
  • [5] 3D printed integrated nanoporous membranes for electroextraction of DNA
    Balakrishnan, Hari Kalathil
    Lee, Soo Min
    Dumee, Ludovic F.
    Doeven, Egan H.
    Alexander, Richard
    Yuan, Dan
    Guijt, Rosanne M.
    NANOSCALE, 2023, 15 (24) : 10371 - 10382
  • [6] 3D Printed Multimaterial Microfluidic Valve
    Keating, Steven J.
    Gariboldi, Maria Isabella
    Patrick, William G.
    Sharma, Sunanda
    Kong, David S.
    Oxman, Neri
    PLOS ONE, 2016, 11 (08):
  • [7] 3D printed millireactors for process intensification
    Santana, Harrson S.
    Rodrigues, Alan C.
    Lopes, Mariana G. M.
    Russo, Felipe N.
    Silva, Joao L., Jr.
    Taranto, Osvaldir P.
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (01) : 180 - 190
  • [8] Patient acceptability of 3D printed medicines
    Goyanes, Alvaro
    Scarpa, Mariagiovanna
    Kamlow, Michael
    Gaisford, Simon
    Basit, Abdul W.
    Orlu, Mine
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 530 (1-2) : 71 - 78
  • [9] 3D printed stacked diffractive microlenses
    Thiele, Simon
    Pruss, Christof
    Herkommer, Alois M.
    Giessen, Harald
    OPTICS EXPRESS, 2019, 27 (24) : 35621 - 35630
  • [10] An open-source, 3D printed inkjet DNA synthesizer
    Kim, Junhyeong
    Kim, Haeun
    Bang, Duhee
    SCIENTIFIC REPORTS, 2024, 14 (01)