DNA Assembly in 3D Printed Fluidics

被引:37
|
作者
Patrick, William G. [1 ]
Nielsen, Alec A. K. [2 ]
Keating, Steven J. [1 ,3 ]
Levy, Taylor J. [1 ]
Wang, Wei [1 ]
Rivera, Jaime J. [2 ]
Mondragn-Palomino, Octavio [2 ]
Carr, Peter A. [4 ]
Voigt, Christopher A. [2 ]
Oxman, Neri [1 ]
Kong, David S. [4 ]
机构
[1] MIT, Media Lab, Sch Architecture & Planning, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] MIT, Lincoln Lab, Lexington, MA 02173 USA
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
GENE SYNTHESIS; SYNTHETIC BIOLOGY; ESCHERICHIA-COLI; CHIP; OPTIMIZATION; SEQUENCE; DEVICES; DESIGN; LAB;
D O I
10.1371/journal.pone.0143636
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro-and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $ 5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] An open source toolkit for 3D printed fluidics
    Adam J. N. Price
    Andrew J. Capel
    Robert J. Lee
    Patrick Pradel
    Steven D. R. Christie
    Journal of Flow Chemistry, 2021, 11 : 37 - 51
  • [2] An open source toolkit for 3D printed fluidics
    Price, Adam J. N.
    Capel, Andrew J.
    Lee, Robert J.
    Pradel, Patrick
    Christie, Steven D. R.
    JOURNAL OF FLOW CHEMISTRY, 2021, 11 (01) : 37 - 51
  • [3] Hierarchical Composites Patterned via 3D Printed Cellular Fluidics
    Gemeda, Hawi B.
    Dudukovic, Nikola A.
    Zhu, Cheng
    Guell Izard, Anna
    Gongora, Aldair E.
    Deotte, Joshua R.
    Davis, Johnathan T.
    Duoss, Eric B.
    Fong, Erika J.
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (20):
  • [4] Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics
    Tsuda, Soichiro
    Jaffery, Hussain
    Doran, David
    Hezwani, Mohammad
    Robbins, Phillip J.
    Yoshida, Mari
    Cronin, Leroy
    PLOS ONE, 2015, 10 (11):
  • [5] 3D printed fluidics with embedded analytic functionality for automated reaction optimisation
    Capel, Andrew J.
    Wright, Andrew
    Harding, Matthew J.
    Weaver, George W.
    Li, Yuqi
    Harris, Russell A.
    Edmondson, Steve
    Goodridge, Ruth D.
    Christie, Steven D. R.
    BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2017, 13 : 111 - 119
  • [6] 3D printed DNA heart patches
    King, Anthony
    CHEMISTRY & INDUSTRY, 2019, 83 (05) : 7 - 7
  • [7] MICROSCALE 3D PRINTED PATTERNS FOR NANOSCALE PARTICLE ASSEMBLY
    Jambhulkar, Sayli
    Xu, Weiheng
    Zhu, Yuxiang
    Ravichandran, Dharneedar
    Song, Kenan
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 2, 2021,
  • [8] Applications of 3D printed chimeric DNA biomaterials
    Dobres S.
    Mula G.
    Sauer J.
    Zhu D.
    Engineered Regeneration, 2022, 3 (01): : 13 - 23
  • [9] DNA assembly creates 3D superconducting nanostructures
    Sealy, Cordelia
    NANO TODAY, 2021, 36
  • [10] 3D Printed
    Good, Andrew
    MATERIALS EVALUATION, 2016, 74 (07) : 984 - 989