Cu2ZnSnS4 alloys synthesized from Cu2SnS3@ZnS nanoparticles via a facile hydrothermal approach

被引:17
作者
Li, Wen [1 ,3 ]
Han, Xiuxun [1 ]
Zhao, Yun [1 ]
Liu, Liang [2 ,3 ]
Wang, Jinqing [2 ]
Yang, Shengrong [2 ]
Tanaka, Tooru [4 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, Lab Clean Energy Chem & Mat, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[4] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan
基金
日本学术振兴会;
关键词
Cu2SnS3@ZnS; Cu2ZnSnS4; Core-shell structure; Semiconductors; Solar energy materials; SOLAR-CELLS; NANORODS; BINARY;
D O I
10.1016/j.matlet.2014.03.159
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A facile and low-cost approach was developed to prepare high quality quaternary Cu2ZnSnS4(CZTS) alloys through the thermal treating of the core-shell Cu2SnS3@ZnS nanoparticles. The synthesis process of the core-shell structure involves a simple two-step hydrothermal route that starts from the well-dispersed ternary Cu2SnS3 core with the introduction of poly(vinylpyrrolidone) (PVP) in the reaction solution, and ended by the coated binary ZnS shell upon the adsorption of citrate groups onto the preformed cores. X-ray diffraction, Raman spectrum and UV-vis absorption spectrum confirmed the single-phase formation and the proper bandgap of 1.51 eV for the CZTS alloys. This effective hydrothermal method can be readily applied for industrial production. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 16 条
[1]   Cu2Zn1-xCdxSn(Se1-ySy)4 solid solutions as absorber materials for solar cells [J].
Altosaar, M. ;
Raudoja, J. ;
Timmo, K. ;
Danilson, M. ;
Grossberg, M. ;
Krustok, J. ;
Mellikov, E. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (01) :167-170
[2]  
[Anonymous], ADV ENERGY MAT
[3]   Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application [J].
Camara, Sekou Mariama ;
Wang, Lingling ;
Zhang, Xintong .
NANOTECHNOLOGY, 2013, 24 (49)
[4]   High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles [J].
Cao, Yanyan ;
Denny, Michael S., Jr. ;
Caspar, Jonathan V. ;
Farneth, William E. ;
Guo, Qijie ;
Ionkin, Alex S. ;
Johnson, Lynda K. ;
Lu, Meijun ;
Malajovich, Irina ;
Radu, Daniela ;
Rosenfeld, H. David ;
Choudhury, Kaushik Roy ;
Wu, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (38) :15644-15647
[5]   Optical Properties of the Type-II Core-Shell TiO2@CdS Nanorods for Photovoltaic Applications [J].
Das, Kajari ;
De, S. K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (09) :3494-3501
[6]   The Role of Sulfur in Solution-Processed Cu2ZnSn(S,Se)4 and its Effect on Defect Properties [J].
Duan, Hsin-Sheng ;
Yang, Wenbing ;
Bob, Brion ;
Hsu, Chia-Jung ;
Lei, Bao ;
Yang, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (11) :1466-1471
[7]   Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides [J].
Hergert, F. ;
Hock, R. .
THIN SOLID FILMS, 2007, 515 (15) :5953-5956
[8]   Studies on ligand exchange reaction of functionalized mercaptothiadiazole compounds onto citrate capped gold nanoparticles [J].
Kalimuthu, Palraj ;
John, S. Abraham .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 122 (2-3) :380-385
[9]   Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core-Shell Nanorods [J].
Khanchandani, Sunita ;
Kundu, Simanta ;
Patra, Amitava ;
Ganguli, Ashok K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (44) :23653-23662
[10]   Development and Properties of Surfactant-Free Water-Dispersible Cu2ZnSnS4 Nanocrystals: A Material for Low-Cost Photovoltaics [J].
Kush, Priya ;
Ujjain, Sanjeev Kumar ;
Mehra, Navin Chand ;
Jha, Pika ;
Sharma, Raj Kishore ;
Deka, Sasanka .
CHEMPHYSCHEM, 2013, 14 (12) :2793-2799