共 50 条
Distance constrained vehicle routing problem to minimize the total cost: algorithms and complexity
被引:2
作者:
Yu, Wei
[1
]
Liu, Zhaohui
[1
]
Bao, Xiaoguang
[2
]
机构:
[1] East China Univ Sci & Technol, Dept Math, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Shanghai Ocean Univ, Coll Informat Technol, 999 Huchenghuan Rd, Shanghai 201306, Peoples R China
基金:
上海市自然科学基金;
中国国家自然科学基金;
关键词:
Vehicle routing;
Cycle cover;
Path cover;
Approximation algorithm;
Complexity;
Integrality gap;
APPROXIMATION ALGORITHMS;
COVER;
D O I:
10.1007/s10878-020-00669-y
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Given lambda > 0, an undirected complete graph G = (V, E) with nonnegative edge-weight function obeying the triangle inequality and a depot vertex r is an element of V, a set {C-1,..., C-k} of cycles is called a lambda-bounded r -cycle cover if V subset of boolean OR(k)(i=1) V(C-i) and each cycle (C)i contains r and has a length of at most lambda. The Distance Constrained Vehicle Routing Problem with the objective of minimizing the total cost (DVRP-TC) aims to find a lambda-bounded r -cycle cover {C-1,..., C-k} such that the sum of the total length of the cycles and gamma k is minimized, where. is an input indicating the assignment cost of a single cycle. For DVRP-TC on tree metric, we show a 2-approximation algorithm and give an LP relaxation whose integrality gap lies in the interval [2, 5/2]. For the unrooted version of DVRP-TC, we devise a 5-approximation algorithm and give an LP relaxation whose integrality gap is between 2 and 25. For unrooted DVRP-TC on tree metric we develop a 3-approximation algorithm. For unrooted DVRP-TC on line metric we obtain an O(n(3)) time exact algorithm, where n is the number of vertices. Moreover, we give some examples to demonstrate that our results can also be applied to the path-version of (unrooted) DVRP-TC.
引用
收藏
页码:1405 / 1422
页数:18
相关论文
共 50 条