The Minimum Density Power Divergence Estimation for the Lognormal Density

被引:2
作者
Pak, Ro Jin [1 ]
机构
[1] Dankook Univ, Dept Stat & Informat, Yoing 448701, South Korea
关键词
Maximum likelihood estimation; Lognormal distribution; Minimum distance estimation;
D O I
10.1080/03610926.2012.737493
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we implement the minimum density power divergence estimation for estimating the parameters of the lognormal density. We compare the minimum density power divergence estimator (MDPDE) and the maximum likelihood estimator (MLE) in terms of robustness and asymptotic distribution. The simulations and an example indicate that the MDPDE is less biased than MLE and is as good as MLE in terms of the mean square error under various distributional situations.
引用
收藏
页码:4582 / 4588
页数:7
相关论文
共 10 条
  • [1] Robust and efficient estimation by minimising a density power divergence
    Basu, A
    Harris, IR
    Hjort, NL
    Jones, MC
    [J]. BIOMETRIKA, 1998, 85 (03) : 549 - 559
  • [2] ACQUISITION OF RESISTANCE IN GUINEA PIGS INFECTED WITH DIFFERENT DOSES OF VIRULENT TUBERCLE BACILLI
    BJERKEDAL, T
    [J]. AMERICAN JOURNAL OF HYGIENE, 1960, 72 (01): : 130 - 148
  • [3] Analysis of lognormal survival data
    Gupta, RC
    Kannan, N
    Raychaudhuri, A
    [J]. MATHEMATICAL BIOSCIENCES, 1997, 139 (02) : 103 - 115
  • [4] HAMPEL FR, 1981, ROBUST STAT APPROACH
  • [5] Hogg R.V., 1984, Loss Distribution
  • [6] Huber P., 2011, ROBUST STAT
  • [7] Juarez SF., 2004, Extremes, V7, P237, DOI DOI 10.1007/S10687-005-6475-6
  • [8] Estimation of a tail index based on minimum density power divergence
    Kim, Moosup
    Lee, Sangyeol
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) : 2453 - 2471
  • [9] Klugman S. A., 2019, Loss models: From data to decisions, V5th
  • [10] Lewis N., 2004, OPERATIONAL RISK EXC