Determination of temporal information granules to improve forecasting in fuzzy time series

被引:49
|
作者
Wang, Lizhu [1 ,2 ]
Liu, Xiaodong [1 ]
Pedrycz, Witold [3 ]
Shao, Yongyun [2 ]
机构
[1] Dalian Univ Technol, Res Ctr Informat & Control, Dalian 116024, Liaoning Provin, Peoples R China
[2] Shenyang Normal Univ, Sch Math & Syst Sci, Shenyang 110034, Peoples R China
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2V4, Canada
关键词
Fuzzy time series; Gath-Geva (GG) clustering; Information granules; Enrollment; Segmentation; INTERVALS; ENROLLMENTS; MODELS; LENGTH; PREDICTION;
D O I
10.1016/j.eswa.2013.10.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Partitioning the universe of discourse and determining intervals containing useful temporal information and coming with better interpretability are critical for forecasting in fuzzy time series. In the existing literature, researchers seldom consider the effect of time variable when they partition the universe of discourse. As a result, and there is a lack of interpretability of the resulting temporal intervals. In this paper, we take the temporal information into account to partition the universe of discourse into intervals with unequal length. As a result, the performance improves forecasting quality. First, time variable is involved in partitioning the universe through Gath-Geva clustering-based time series segmentation and obtain the prototypes of data, then determine suitable intervals according to the prototypes by means of information granules. An effective method of partitioning and determining intervals is proposed. We show that these intervals carry well-defined semantics. To verify the effectiveness of the approach, we apply the proposed method to forecast enrollment of students of Alabama University and the Taiwan Stock Exchange Capitalization Weighted Stock Index. The experimental results show that the partitioning with temporal information can greatly improve accuracy of forecasting. Furthermore, the proposed method is not sensitive to its parameters. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3134 / 3142
页数:9
相关论文
共 50 条
  • [21] Strong α-cut and associated membership-based modeling for fuzzy time series forecasting
    Goyal, Gunjan
    Bisht, Dinesh C. S.
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2021, 12 (01)
  • [22] An integrated fuzzy time series forecasting system
    Liu, Hao-Tien
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (06) : 10045 - 10053
  • [23] A vector forecasting model for fuzzy time series
    Li, Sheng-Tun
    Kuo, Shu-Ching
    Cheng, Yi-Chung
    Chen, Chih-Chuan
    APPLIED SOFT COMPUTING, 2011, 11 (03) : 3125 - 3134
  • [24] Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering
    Egrioglu, E.
    Aladag, C. H.
    Yolcu, U.
    Uslu, V. R.
    Erilli, N. A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) : 10355 - 10357
  • [25] Forecasting portfolio returns using weighted fuzzy time series methods
    Rubio, Abel
    Bermudez, Jose D.
    Vercher, Enriqueta
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 75 : 1 - 12
  • [26] Long-Term Time Series Forecasting With Multilinear Trend Fuzzy Information Granules for LSTM in a Periodic Framework
    Zhu, Chenglong
    Ma, Xueling
    Ding, Weiping
    Zhan, Jianming
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (01) : 322 - 336
  • [27] A novel forecasting model for the long-term fluctuation of time series based on polar fuzzy information granules
    Luo, Chao
    Song, Xi
    Zheng, YuanJie
    INFORMATION SCIENCES, 2020, 512 (512) : 760 - 779
  • [28] Fuzzy time series for real-time flood forecasting
    Chen, Chang-Shian
    Jhong, You-Da
    Wu, Wan-Zhen
    Chen, Shien-Tsung
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (03) : 645 - 656
  • [29] A neural network-based fuzzy time series model to improve forecasting
    Yu, Tiffany Hui-Kuang
    Huarng, Kun-Huang
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) : 3366 - 3372
  • [30] Stock index forecasting: A new fuzzy time series forecasting method
    Wu, Hao
    Long, Haiming
    Wang, Yue
    Wang, Yanqi
    JOURNAL OF FORECASTING, 2021, 40 (04) : 653 - 666