An Injectivity Evaluation Model of Polymer Flooding in Offshore Multilayer Reservoir

被引:10
作者
Sun, Liang [1 ]
Li, Baozhu [1 ]
Jiang, Hanqiao [2 ]
Li, Yong [1 ]
Jiao, Yuwei [1 ]
机构
[1] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[2] China Univ Petr, Minist Educ, Key Lab Petr Engn, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
offshore multilayer reservoir; injectivity evaluation; polymer flooding; fractional flow; equivalent percolation resistance; analysis of influencing factors;
D O I
10.3390/en12081444
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Good polymer flood performance evaluation requires an understanding of polymer injectivity. Offshore reservoirs are characterized by unfavorable water-oil mobility ratios, strong heterogeneity, and multilayer production, which collectively contribute to unique challenges. Accordingly, this article presents a semi-analytical model for the evaluation of commingled and zonal injectivity in the entire development phase, which consists of primary water flooding, secondary polymer flooding, and subsequent water flooding. First, we define four flow regions with unique saturation profiles in order to accurately describe the fluid dynamic characteristics between the injector and the producer. Second, the frontal advance equation of polymer flooding is built up based on the theory of polymer-oil fractional flow. The fluid saturation distribution and the injection-production pressure difference are determined with the method of equivalent seepage resistance. Then, the zonal flow rate is obtained by considering the interlayer heterogeneity, and the semi-analytical model for calculating polymer injectivity in a multilayer reservoir is established. The laboratory experiment data verify the reliability of the proposed model. The results indicate the following. (1) The commingled injectivity decreases significantly before polymer breakthrough and increases steadily after polymer breakthrough. The change law of zonal injectivity is consistent with that of commingled injectivity. Due to the influence of interlayer heterogeneity, the quantitative indexes of the zonal flow rate and injection performance are different. The injectivity of the high-permeability layer is better than that of the low-permeability layer. (2) The higher the injection rate and the lower the polymer concentration, the better the injectivity is before polymer breakthrough. An earlier injection time, lower injection rate, larger polymer injection volume, and lower polymer concentration will improve the injectivity after polymer breakthrough. The polymer breakthrough time is a significant indicator in polymer flooding optimization. This study has provided a quick and reasonable model of injectivity evaluation for offshore multilayer reservoirs.
引用
收藏
页数:21
相关论文
共 27 条
[1]   Control of Numerical Dispersion in Streamline-Based Simulations of Augmented Waterflooding [J].
AlSofi, Abdulkareem M. ;
Blunt, Martin J. .
SPE JOURNAL, 2013, 18 (06) :1102-1111
[2]   Streamline-Based Simulation of Non-Newtonian Polymer Flooding [J].
AlSofi, Abdulkareem M. ;
Blunt, Martin J. .
SPE JOURNAL, 2010, 15 (04) :901-911
[3]  
[Anonymous], 1990, SPE Reservoir Eng., DOI DOI 10.2118/16963-PA.SPE-16963-PA
[4]  
Buell R.S., 1986, ANAL INJECTIVITY NON
[5]  
[曹宝格 CAO Baoge], 2011, [石油学报, Acta Petrolei Sinica], V32, P652
[6]  
Jain L., 2004, P SPE IMPR OIL REC S
[7]  
[姜维东 Jiang Weidong], 2013, [大庆石油地质与开发, Petroleum Geology & Oilfield Development in Daqing], V32, P103
[8]  
Kaminsky R.D., 2007, P INT PETR TECHN C D P INT PETR TECHN C D
[9]  
Kang X.D., 2011, P SPE ENH OIL REC C
[10]   A METHOD FOR PREDICTING THE PERFORMANCE OF UNSTABLE MISCIBLE DISPLACEMENT IN HETEROGENEOUS MEDIA [J].
KOVAL, EJ .
SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1963, 3 (02) :145-154