Fatigue properties of austenitic stainless steels with different nitrogen

被引:1
|
作者
Hattori, N [1 ]
Nishida, S [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Saga 8408502, Japan
关键词
fatigue; austenitic stainless steels; nitrogen content; non-propagating microcracks;
D O I
10.4028/www.scientific.net/KEM.261-263.1215
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The fatigue properties of austenitic stainless steels become inevitably important when using in structural materials. The authors have performed fatigue tests to investigate the effect of nitrogen content on fatigue properties of typical austenitic stainless steels (SUS304) and two kinds of nitrogen-contained SUS304 (SUS304N and YUS170). The main results obtained in this study are as follows; (1) The knee point in S-N curves exists for SUS304 and SUS304N, but does not exist for YUS170. (2) The fatigue limit of SUS304N is higher than that of SUS304. On the other hand, the fatigue strength by 10 7 cycles of YUS170 is lower than those of SUS304 and SUS304N. (3) For SUS304, the transformation ratio increases with increase in stress amplitude. On the other hand, the transformation ratio of SUS304N is very small and that of YUS170 remains essentially zero.
引用
收藏
页码:1215 / 1220
页数:6
相关论文
共 50 条
  • [21] High nitrogen austenitic cases in stainless steels
    Berns, H
    Siebert, S
    ISIJ INTERNATIONAL, 1996, 36 (07) : 927 - 931
  • [22] Effect of microstructure on creep fatigue properties for type 316 austenitic stainless steels
    Fujita, N
    Nakazawa, T
    Komatsu, H
    Kaguchi, H
    Kaneko, H
    Ueda, H
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1996, 82 (06): : 538 - 543
  • [23] Deformation Properties of Austenitic Stainless Steels with Different Stacking Fault Energies
    Molnar, David
    Engberg, Goran
    Li, Wei
    Vitos, Levente
    THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 : 190 - 197
  • [24] Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels
    Murakami, Yukitaka
    Kanezaki, Toshihiko
    Mine, Yoji
    Matsuoka, Saburo
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (06): : 1327 - 1339
  • [25] High Cycle Fatigue of Metastable Austenitic Stainless Steels
    Fargas, G.
    Zapata, A.
    Anglada, M.
    Mateo, A.
    5TH INTERNATIONAL EEIGM/AMASE/FORGEMAT CONFERENCE ON ADVANCED MATERIALS RESEARCH, 2009, 5
  • [26] Thermal fatigue crack growth in austenitic stainless steels
    Virkkunen, I
    Kemppainen, M
    Hänninen, H
    FATIGUE '99: PROCEEDINGS OF THE SEVENTH INTERNATIONAL FATIGUE CONGRESS, VOLS 1-4, 1999, : 2183 - 2188
  • [27] Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels
    Yukitaka Murakami
    Toshihiko Kanezaki
    Yoji Mine
    Saburo Matsuoka
    Metallurgical and Materials Transactions A, 2008, 39 : 1327 - 1339
  • [28] Fatigue behaviors of high nitrogen stainless steels with different deformation modes
    Park, Jun Young
    Park, Seong-Jun
    Kang, Jun-Yun
    Lee, Chang-Hoon
    Ha, Heon-Young
    Moon, Joonoh
    Jang, Jae Hoon
    Lee, Tae-Ho
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 682 : 622 - 628
  • [29] Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels
    Zhou-hua Jiang
    Zu-rui Zhang
    Hua-bing Li
    Zhen Li
    Ma Qi-feng
    International Journal of Minerals, Metallurgy, and Materials, 2010, 17 : 729 - 736
  • [30] MECHANICAL PROPERTIES OF STAINLESS AUSTENITIC STEELS WITH ELEVATED NITROGEN CONTENT AND THEIR POSSIBILITIES OF USE
    JESPER, H
    WESSLING, W
    ACHTELIK, K
    STAHL UND EISEN, 1966, 86 (21): : 1408 - &