Low viscosity of the Earth's inner core

被引:39
|
作者
Belonoshko, Anatoly B. [1 ]
Fu, Jie [2 ]
Bryk, Taras [3 ]
Simak, Sergei, I [4 ]
Mattesini, Maurizio [5 ,6 ]
机构
[1] Royal Inst Technol KTH, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden
[2] Ningbo Univ, Dept Phys, Fac Sci, Ningbo 315211, Zhejiang, Peoples R China
[3] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine
[4] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[5] Univ Complutense Madrid, Dept Earths Phys & Astrophys, E-28040 Madrid, Spain
[6] UCM, CSIC, Fac Ciencias Fis, Inst Geociencias, Plaza Ciencias 1, Madrid 28040, Spain
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
CENTERED-CUBIC IRON; IRREVERSIBLE-PROCESSES; MELTING CURVE; ATTENUATION; ANISOTROPY; DYNAMICS; LIQUID; GPA;
D O I
10.1038/s41467-019-10346-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Earth's solid inner core is a highly attenuating medium. It consists mainly of iron. The high attenuation of sound wave propagation in the inner core is at odds with the widely accepted paradigm of hexagonal close-packed phase stability under inner core conditions, because sound waves propagate through the hexagonal iron without energy dissipation. Here we show by first-principles molecular dynamics that the body-centered cubic phase of iron, recently demonstrated to be thermodynamically stable under the inner core conditions, is considerably less elastic than the hexagonal phase. Being a crystalline phase, the body-centered cubic phase of iron possesses the viscosity close to that of a liquid iron. The high attenuation of sound in the inner core is due to the unique diffusion characteristic of the body-centered cubic phase. The low viscosity of iron in the inner core enables the convection and resolves a number of controversies.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Shear Properties of Earth's Inner Core
    Tkalcic, Hrvoje
    Wang, Sheng
    Pham, Thanh-Son
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2022, 50 : 153 - 181
  • [22] Grain structure of the Earth's inner core
    Venet, Lucile
    Duffar, Thierry
    Deguen, Renaud
    COMPTES RENDUS GEOSCIENCE, 2009, 341 (07) : 513 - 516
  • [23] Candy Wrapper for the Earth's Inner Core
    Mattesini, M.
    Belonoshko, A. B.
    Tkalcic, H.
    Buforn, E.
    Udias, A.
    Ahuja, R.
    SCIENTIFIC REPORTS, 2013, 3
  • [24] Earth's Solid Inner Core: Seismic Implications of Freezing and Melting
    Cormier, Vernon F.
    Attanayake, Januka
    JOURNAL OF EARTH SCIENCE, 2013, 24 (05) : 683 - 698
  • [25] Seismic velocity and attenuation structures in the top of the Earth's inner core
    Wen, LX
    Niu, FL
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2002, 107 (B11)
  • [26] Unveiling the effect of Ni on the formation and structure of Earth's inner core
    Sun, Yang
    Mendelev, Mikhail I.
    Zhang, Feng
    Liu, Xun
    Da, Bo
    Wang, Cai-Zhuang
    Wentzcovitch, Renata M.
    Ho, Kai-Ming
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (04)
  • [27] Building a regime diagram for the Earth's inner core
    Lasbleis, Marine
    Deguen, Renaud
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2015, 247 : 80 - 93
  • [28] Effects of Si on the elastic property of Fe at Earth's inner core pressures: First principles study
    Tsuchiya, Taku
    Fujibuchi, Mika
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2009, 174 (1-4) : 212 - 219
  • [29] Seismic structure and dynamic process of the Earth's inner core and its boundary
    Wen LianXing
    Tian DongDong
    Yao JiaYuan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 61 (03): : 803 - 818
  • [30] Thermal convection in Earth's inner core with phase change at its boundary
    Deguen, Renaud
    Alboussiere, Thierry
    Cardin, Philippe
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 194 (03) : 1310 - 1334