N-soliton solutions and the Hirota conditions in (2+1)-dimensions

被引:149
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
关键词
N-Soliton solution; Hirota N-soliton condition; (2+1)-Dimensional integrable equations; BILINEAR EQUATIONS;
D O I
10.1007/s11082-020-02628-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We compute N-soliton solutions and analyze the Hirota N-soliton conditions, in (2+1)-dimensions, based on the Hirota bilinear formulation. An algorithm to check the Hirota conditions is proposed by comparing degrees of the polynomials generated from the Hirota function in N wave vectors. A weight number is introduced while transforming the Hirota function to achieve homogeneity of the resulting polynomial. Applications to three integrable equations: the (2+1)-dimensional KdV equation, the Kadomtsev-Petviashvili equation, the (2+1)-dimensional Hirota-Satsuma-Ito equation, are made, thereby providing proofs of the existence of N-soliton solutions in the three model equations.
引用
收藏
页数:12
相关论文
共 31 条
[1]  
Ablowitz M.J., 1981, Solitons and the Inverse Scattering Transform
[2]   On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy [J].
Biondini, G ;
Kodama, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (42) :10519-10536
[3]   ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1986, 2 (03) :271-279
[4]   Canonical variables for multiphase solutions of the KP equation [J].
Deconinck, B .
STUDIES IN APPLIED MATHEMATICS, 2000, 104 (03) :229-292
[5]  
Hasegawa A., 1990, OPTICAL SOLITONS FIB
[6]  
Hasegawa A., 1989, Optical Solitons in Fibers
[8]  
Hietarinta J., 1997, Integrability of Nonlinear Systems. Proceedings of the CIMPA School, P95
[9]  
Hirota R., 1980, Solitons, P157, DOI 10.1007/978-3-642-81448-8_5
[10]   N-SOLITON SOLUTIONS OF MODEL EQUATIONS FOR SHALLOW-WATER WAVES [J].
HIROTA, R ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 40 (02) :611-612