Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut

被引:20
|
作者
Pipek, O. [1 ]
Ribli, D. [1 ]
Molnar, J. [2 ]
Poti, A. [2 ]
Krzystanek, M. [3 ]
Bodor, A. [1 ]
Tusnady, G. E. [2 ]
Szallasi, Z. [3 ,4 ,5 ,6 ]
Csabai, I. [1 ]
Szuts, D. [2 ]
机构
[1] Eotvos Lorand Univ, Dept Phys & Complex Syst, H-1117 Budapest, Hungary
[2] Hungarian Acad Sci, Inst Enzymol, Res Ctr Nat Sci, H-1117 Budapest, Hungary
[3] Tech Univ Denmark, Ctr Biol Sequence Anal, Dept Syst Biol, DK-2800 Lyngby, Denmark
[4] Boston Childrens Hosp, CHIP, Boston, MA 02115 USA
[5] Harvard Med Sch, Boston, MA 02215 USA
[6] Semmelweis Univ, Dept Pathol, Brain Metastasis Res Grp, MTA SE NAP, H-1091 Budapest, Hungary
来源
BMC BIOINFORMATICS | 2017年 / 18卷
基金
匈牙利科学研究基金会;
关键词
Next generation sequencing; Mutagenesis; Somatic mutation detection; Multiple isogenic samples; Low false positive rate; Demonstrative algorithm; POINT MUTATIONS; READ ALIGNMENT; CANCER; NUMBER; ERROR;
D O I
10.1186/s12859-017-1492-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms are not optimised for the simultaneous analysis of multiple samples, or for non-human experimental model systems with no reliable databases of common genetic variations. Most standard tools either require numerous in-house post filtering steps with scarce documentation or take an unpractically long time to run. To overcome these problems, we designed the streamlined IsoMut tool which can be readily adapted to experimental scenarios where the goal is the identification of experimentally induced mutations in multiple isogenic samples. Methods: Using 30 isogenic samples, reliable cohorts of validated mutations were created for testing purposes. Optimal values of the filtering parameters of IsoMut were determined in a thorough and strict optimization procedure based on these test sets. Results: We show that IsoMut, when tuned correctly, decreases the false positive rate compared to conventional tools in a 30 sample experimental setup; and detects not only single nucleotide variations, but short insertions and deletions as well. IsoMut can also be run more than a hundred times faster than the most precise state of art tool, due its straightforward and easily understandable filtering algorithm. Conclusions: IsoMut has already been successfully applied in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out to be an invaluable tool in the analysis of such data.
引用
收藏
页数:11
相关论文
共 11 条
  • [1] Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut
    O. Pipek
    D. Ribli
    J. Molnár
    Á. Póti
    M. Krzystanek
    A. Bodor
    G. E. Tusnády
    Z. Szallasi
    I. Csabai
    D. Szüts
    BMC Bioinformatics, 18
  • [2] Accelerated somatic mutation calling for whole-genome and whole-exome sequencing data from heterogenous tumor samples
    Ji, Shuangxi
    Zhu, Tong
    Sethia, Ankit
    Wang, Wenyi
    GENOME RESEARCH, 2024, 34 (04) : 633 - 641
  • [3] Accurate and fast methods to estimate the population mutation rate from error prone sequences
    Knudsen, Bjarne
    Miyamoto, Michael M.
    BMC BIOINFORMATICS, 2009, 10 : 247
  • [4] AMAP: A pipeline for whole-genome mutation detection in Arabidopsis thaliana
    Ishii, Kotaro
    Kazama, Yusuke
    Hirano, Tomonari
    Hamada, Michiaki
    Ono, Yukiteru
    Yamada, Mieko
    Abe, Tomoko
    GENES & GENETIC SYSTEMS, 2016, 91 (04) : 229 - 233
  • [5] Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing
    Xiao, Wenming
    Ren, Luyao
    Chen, Zhong
    Fang, Li Tai
    Zhao, Yongmei
    Lack, Justin
    Guan, Meijian
    Zhu, Bin
    Jaeger, Erich
    Kerrigan, Liz
    Blomquist, Thomas M.
    Hung, Tiffany
    Sultan, Marc
    Idler, Kenneth
    Lu, Charles
    Scherer, Andreas
    Kusko, Rebecca
    Moos, Malcolm
    Xiao, Chunlin
    Sherry, Stephen T.
    Abaan, Ogan D.
    Chen, Wanqiu
    Chen, Xin
    Nordlund, Jessica
    Liljedahl, Ulrika
    Maestro, Roberta
    Polano, Maurizio
    Drabek, Jiri
    Vojta, Petr
    Koks, Sulev
    Reimann, Ene
    Madala, Bindu Swapna
    Mercer, Timothy
    Miller, Chris
    Jacob, Howard
    Truong, Tiffany
    Moshrefi, Ali
    Natarajan, Aparna
    Granat, Ana
    Schroth, Gary P.
    Kalamegham, Rasika
    Peters, Eric
    Petitjean, Virginie
    Walton, Ashley
    Shen, Tsai-Wei
    Talsania, Keyur
    Vera, Cristobal Juan
    Langenbach, Kurt
    de Mars, Maryellen
    Hipp, Jennifer A.
    NATURE BIOTECHNOLOGY, 2021, 39 (09) : 1141 - +
  • [6] A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing
    Alioto, Tyler S.
    Buchhalter, Ivo
    Derdak, Sophia
    Hutter, Barbara
    Eldridge, Matthew D.
    Hovig, Eivind
    Heisler, Lawrence E.
    Beck, Timothy A.
    Simpson, Jared T.
    Tonon, Laurie
    Sertier, Anne-Sophie
    Patch, Ann-Marie
    Jaeger, Natalie
    Ginsbach, Philip
    Drews, Ruben
    Paramasivam, Nagarajan
    Kabbe, Rolf
    Chotewutmontri, Sasithorn
    Diessl, Nicolle
    Previti, Christopher
    Schmidt, Sabine
    Brors, Benedikt
    Feuerbach, Lars
    Heinold, Michael
    Groebner, Susanne
    Korshunov, Andrey
    Tarpey, Patrick S.
    Butler, Adam P.
    Hinton, Jonathan
    Jones, David
    Menzies, Andrew
    Raine, Keiran
    Shepherd, Rebecca
    Stebbings, Lucy
    Teague, Jon W.
    Ribeca, Paolo
    Giner, Francesc Castro
    Beltran, Sergi
    Raineri, Emanuele
    Dabad, Marc
    Heath, Simon C.
    Gut, Marta
    Denroche, Robert E.
    Harding, Nicholas J.
    Yamaguchi, Takafumi N.
    Fujimoto, Akihiro
    Nakagawa, Hidewaki
    Quesada, Ctor
    Valdes-Mas, Rafael
    Nakken, Sigve
    NATURE COMMUNICATIONS, 2015, 6
  • [7] Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing
    Hollegaard, Mads Vilhelm
    Grauholm, Jonas
    Nielsen, Ronni
    Grove, Jakob
    Mandrup, Susanne
    Hougaard, David Michael
    MOLECULAR GENETICS AND METABOLISM, 2013, 110 (1-2) : 65 - 72
  • [8] Detection of a novel mutation in the rpoB gene in a multidrug resistant Mycobacterium tuberculosis isolate using whole genome next generation sequencing
    Hirani, Nilma
    Joshi, Ameeta
    Anand, Siddharth
    Chowdhary, Abhay
    Ganesan, Karthik
    Agarwal, Meenal
    Phadke, Nikhil
    JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, 2020, 22 : 270 - 274
  • [9] Inspecting Targeted Deep Sequencing of Whole Genome Amplified DNA Versus Fresh DNA for Somatic Mutation Detection: A Genetic Study in Myelodysplastic Syndrome Patients
    Palomo, Laura
    Fuster-Tormo, Francisco
    Alvira, Daniel
    Adema, Vera
    Pilar Armengol, Maria
    Gomez-Marzo, Paula
    de Haro, Nuri
    Mallo, Mar
    Xicoy, Blanca
    Zamora, Lurdes
    Sole, Francesc
    BIOPRESERVATION AND BIOBANKING, 2017, 15 (04) : 360 - 365
  • [10] Targeted Identification of Rice Grain-Associated Gene Allelic Variation Through Mutation Induction, Targeted Sequencing, and Whole Genome Sequencing Combined with a Mixed-Samples Strategy
    Sun, Kai
    Li, Dandan
    Xia, Aoyun
    Zhao, Hua
    Wen, Qin
    Jia, Sisi
    Wang, Jiafeng
    Yang, Guili
    Zhou, Danhua
    Huang, Cuihong
    Wang, Hui
    Chen, Zhiqiang
    Guo, Tao
    RICE, 2022, 15 (01)