Topological features in non-Abelian gauge theory

被引:29
作者
Malik, RP [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700091, W Bengal, India
关键词
D O I
10.1142/S0217732399002017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the BRST cohomology and exhibit a connection between the Hedge decomposition theorem and the topological properties of a two-dimensional free non-Abelian gauge theory (having no interaction with matter fields). The topological nature of this theory is encoded in the vanishing of the Laplacian operator when equations of motion are exploited. We obtain two sets of topological invariants with respect to BRST and co-BRST charges on the two-dimensional compact manifold and show that the Lagrangian density of the theory can be expressed as the sum of terms that are BRST and co-BRST invariants. Thus, this theory captures together some of the salient features of both Witten and Schwarz type of topological field theories.
引用
收藏
页码:1937 / 1949
页数:13
相关论文
共 33 条
  • [1] SPLIT INVOLUTION AND 2ND CLASS CONSTRAINTS
    BATALIN, IA
    LYAKHOVICH, SL
    TYUTIN, IV
    [J]. MODERN PHYSICS LETTERS A, 1992, 7 (21) : 1931 - 1943
  • [2] TOPOLOGICAL FIELD-THEORY
    BIRMINGHAM, D
    BLAU, M
    RAKOWSKI, M
    THOMPSON, G
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5): : 129 - 340
  • [3] CHRYSSOMALAKOS C, HEPTH9810212
  • [4] SLAVNOV TRANSFORMATIONS AND SUPERSUMMETRY
    CURCI, G
    FERRARI, R
    [J]. PHYSICS LETTERS B, 1976, 63 (01) : 91 - 94
  • [5] Dirac P.A.M., 1964, LECT QUANTUM MECH
  • [6] EGUCHI T, 1980, PHYS REP, V66, P213, DOI 10.1016/0370-1573(80)90130-1
  • [7] ANTIBRACKET, ANTIFIELDS AND GAUGE-THEORY QUANTIZATION
    GOMIS, J
    PARIS, J
    SAMUEL, S
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 259 (1-2): : 1 - 145
  • [8] Henneaux M., 1992, Quantization of Gauge Systems
  • [9] VECTOR-MESON MASS GENERATION BY CHIRAL ANOMALIES
    JACKIW, R
    RAJARAMAN, R
    [J]. PHYSICAL REVIEW LETTERS, 1985, 54 (12) : 1219 - 1221
  • [10] PATH INTEGRAL QUANTIZATION OF TOPOLOGICAL FIELD-THEORIES
    KAUL, RK
    RAJARAMAN, R
    [J]. PHYSICS LETTERS B, 1990, 249 (3-4) : 433 - 438