Benchmarking Manifold Learning Methods on a Large Collection of Datasets

被引:4
作者
Orzechowski, Patryk [1 ,2 ]
Magiera, Franciszek [2 ]
Moore, Jason H. [1 ]
机构
[1] Univ Penn, Inst Biomed Informat, Philadelphia, PA 19104 USA
[2] AGH Univ Sci & Technol, Dept Automat, Al Mickiewicza 30, PL-30059 Krakow, Poland
来源
GENETIC PROGRAMMING, EUROGP 2020 | 2020年 / 12101卷
基金
美国国家卫生研究院;
关键词
Manifold learning; Genetic programming; Machine learning; Dimensionality reduction; Benchmarking; NONLINEAR DIMENSIONALITY REDUCTION; CLASSIFICATION; ALGORITHMS; EIGENMAPS;
D O I
10.1007/978-3-030-44094-7_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Manifold learning, a non-linear approach of dimensionality reduction, assumes that the dimensionality of multiple datasets is artificially high and a reduced number of dimensions is sufficient to maintain the information about the data. In this paper, a large scale comparison of manifold learning techniques is performed for the task of classification. We show the current standing of genetic programming (GP) for the task of classification by comparing the classification results of two GP-based manifold leaning methods: GP-Mal and ManiGP - an experimental manifold learning technique proposed in this paper. We show that GP-based methods can more effectively learn a manifold across a set of 155 different problems and deliver more separable embeddings than many established methods.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 48 条
  • [1] Al-Madi N, 2013, 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), P166, DOI 10.1109/CIDM.2013.6597232
  • [2] Belkin M, 2002, ADV NEUR IN, V14, P585
  • [3] Bhowan U, 2010, LECT NOTES COMPUT SC, V6021, P1, DOI 10.1007/978-3-642-12148-7_1
  • [4] Brodersen Kay H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3121, DOI 10.1109/ICPR.2010.764
  • [5] Multi-objective genetic programming for feature extraction and data visualization
    Cano, Alberto
    Ventura, Sebastian
    Cios, Krzysztof J.
    [J]. SOFT COMPUTING, 2017, 21 (08) : 2069 - 2089
  • [6] Diffusion maps
    Coifman, Ronald R.
    Lafon, Stephane
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) : 5 - 30
  • [7] Cunningham JP, 2015, J MACH LEARN RES, V16, P2859
  • [8] Non-linear dimensionality reduction techniques for unsupervised feature extraction
    De Backer, S
    Naud, A
    Scheunders, P
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (08) : 711 - 720
  • [9] Rainville FM, 2012, PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), P85
  • [10] Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    Donoho, DL
    Grimes, C
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) : 5591 - 5596