Nonlinear Schrodinger Equations for Bose-Einstein Condensates

被引:14
作者
Galati, Luigi [1 ]
Zheng, Shijun [1 ]
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
来源
NONLINEAR AND MODERN MATHEMATICAL PHYSICS | 2013年 / 1562卷
关键词
nonlinear Schrodinger equation; BEC; electromagnetic potential; GROSS-PITAEVSKII EQUATION; MAGNETIC-FIELDS; QUADRATIC POTENTIALS; DIFFERENCE SCHEMES; CAUCHY-PROBLEM; CRITICAL NLS; OPERATORS; ATOMS; GAS; SCATTERING;
D O I
10.1063/1.4828682
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Gross-Pitaevskii equation, or more generally the nonlinear Schrodinger equation, models the Bose-Einstein condensates in a macroscopic gaseous superfluid wave-matter state in ultra-cold temperature. We provide analytical study of the NLS with L-2 initial data in order to understand propagation of the defocusing and focusing waves for the BEC mechanism in the presence of electromagnetic fields. Numerical simulations are performed for the two-dimensional GPE with anisotropic quadratic potentials.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 58 条
  • [1] Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime
    Aftalion, A
    Du, Q
    [J]. PHYSICAL REVIEW A, 2001, 64 (06): : 1 - 11
  • [2] OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR
    ANDERSON, MH
    ENSHER, JR
    MATTHEWS, MR
    WIEMAN, CE
    CORNELL, EA
    [J]. SCIENCE, 1995, 269 (5221) : 198 - 201
  • [3] Bose-Einstein condensation of atomic gases
    Anglin, JR
    Ketterle, W
    [J]. NATURE, 2002, 416 (6877) : 211 - 218
  • [4] Antoine X., GPELAB WEB SOFTWARE
  • [5] ON THE CAUCHY PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS WITH ROTATION
    Antonelli, Paolo
    Marahrens, Daniel
    Sparber, Christof
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) : 703 - 715
  • [6] Bao W., FUDAN LECT NOTES
  • [7] On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime
    Bao, WZ
    Jin, S
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) : 487 - 524
  • [8] Berlyand L., 2011, PINNING HOLES MULTIP
  • [9] Planck's law and light quantum hypothesis
    Bose
    [J]. ZEITSCHRIFT FUR PHYSIK, 1924, 26 : 178 - 181
  • [10] NUMERICAL REGULARIZED MOMENT METHOD OF ARBITRARY ORDER FOR BOLTZMANN-BGK EQUATION
    Cai, Zhenning
    Li, Ruo
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) : 2875 - 2907