Equilibria and stability of four point vortices on a sphere

被引:3
作者
Dritschel, David G. [1 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2020年 / 476卷 / 2241期
基金
英国工程与自然科学研究理事会;
关键词
vortex dynamics; surfaces; point vortices; VORTEX EQUILIBRIA; DYNAMICS; MOTION;
D O I
10.1098/rspa.2020.0344
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper discusses the problem of finding the equilibrium positions of four point vortices, of generally unequal circulations, on the surface of a sphere. A random search method is developed which uses a modification of the linearized equations to converge on distinct equilibria. Many equilibria (47 and possibly more) may exist for prescribed circulations and angular impulse. A linear stability analysis indicates that they are generally unstable, though stable equilibria do exist. Overall, there is a surprising diversity of equilibria, including those which rotate about an axis opposite to the angular impulse vector.
引用
收藏
页数:26
相关论文
共 17 条
[1]   Point vortices exhibit asymmetric equilibria [J].
Aref, H ;
Vainchtein, DL .
NATURE, 1998, 392 (6678) :769-770
[2]  
Boatto S, 2004, PREPRINT, P1
[3]   A vortex ring on a sphere: the case of total vorticity equal to zero [J].
Boatto, Stefanella ;
Simo, Carles .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2158)
[4]  
Borisov A, 2018, REGUL CHAOTIC DYN, V23, P127, DOI 10.1134/S1560354718010100
[5]   VORTEX PATTERNS AND ENERGIES IN A ROTATING SUPERFLUID [J].
CAMPBELL, LJ ;
ZIFF, RM .
PHYSICAL REVIEW B, 1979, 20 (05) :1886-1902
[6]   The motion of point vortices on closed surfaces [J].
Dritschel, D. G. ;
Boatto, S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2176)
[7]   On the late-time behaviour of a bounded, inviscid two-dimensional flow [J].
Dritschel, David G. ;
Qi, Wanming ;
Marston, J. B. .
JOURNAL OF FLUID MECHANICS, 2015, 783 :1-22
[8]  
Dritschel DG, POINT VORTEX D UNPUB
[9]   Motion of three point vortices on a sphere [J].
Kidambi, R ;
Newton, PK .
PHYSICA D, 1998, 116 (1-2) :143-175
[10]  
Newton P.K., 2001, APPL MATH SCI, V145