Convolution random sampling in multiply generated shift-invariant spaces of Lp(Rd)

被引:0
作者
Jiang, Yingchun [1 ]
Li, Wan [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiply generated shift-invariant space; Convolution random sampling; Sampling stability; Condition number; Reconstruction algorithm;
D O I
10.1007/s43034-020-00098-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We mainly consider the stability and reconstruction of convolution random sampling in multiply generated shift-invariant subspaces V-p(Phi) = {Sigma(k is an element of Zd) c(k)(T) Phi(center dot -k) : (c(k))(k is an element of Zd)(l(p)(Z(d)))r} of L-p(R-d), 1 < p < infinity, where Phi = (phi(1), phi(2),., phi(r))(T) with phi(i) is an element of L-p(R-d) and c = (c(1), c(2),., c(r))(T) with c(i) is an element of l(p)(Z(d)), i = 1, 2,., r. The sampling set {x(j)}(j is an element of N) is randomly chosen with a general probability distribution over a bounded cube C-K and the samples are the form of convolution {f * psi (x j)}(j is an element of N) of the signal f. Under some proper conditions for the generator Phi, convolution function psi and probability density function rho, we first approximate V-p(Phi) by a finite dimensional subspace V-N(p)(Phi) ={Sigma(r)(i=1) Sigma(vertical bar k vertical bar <= N) c(i)(k)phi(i)(. - k) : c(i) is an element of l(p) ([-N, N](d))}. Then we show that the sampling stability holds with high probability for all functions in certain compact subsets V-K(p) (Phi) = {f is an element of V-p (Phi) : integral(CK) vertical bar f * psi(x)vertical bar(p) dx >= (1 - delta) integral(Rd) vertical bar f * psi(x)vertical bar (x)vertical bar p dx} of V-p(Phi) when the sampling size is large enough. Finally, we prove that the stability is related to the properties of the random matrix generated by {phi(i) * psi}1(<= i <= r) and give a reconstruction algorithm for the convolution random sampling of functions in V-N(p)(Phi).
引用
收藏
页数:22
相关论文
共 25 条
[1]   Estimation of entropy using random sampling [J].
Al-Omari, Amer Ibrahim .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 :95-102
[2]   Convolution, average sampling, and a calderon resolution of the identity for shift-invariant spaces [J].
Aldroubi, A ;
Sun, QY ;
Tang, WS .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (02) :215-244
[3]   Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces [J].
Aldroubi, A ;
Sun, QY ;
Tang, WS .
CONSTRUCTIVE APPROXIMATION, 2004, 20 (02) :173-189
[4]   Random sampling of multivariate trigonometric polynomials [J].
Bass, RF ;
Gröcheng, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :773-795
[5]   RELEVANT SAMPLING OF BAND-LIMITED FUNCTIONS [J].
Bass, Richard F. ;
Groechenig, Karlheinz .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) :43-58
[6]   Random sampling of bandlimited functions [J].
Bass, Richard F. ;
Groechenig, Karlheinz .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) :1-28
[8]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[9]   Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering [J].
Chan, Stanley H. ;
Zickler, Todd ;
Lu, Yue M. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) :3711-3725
[10]  
Cucker F, 2007, C MO AP C M, P1, DOI 10.1017/CBO9780511618796