The sharp Sobolev inequality in quantitative form

被引:72
作者
Cianchi, A. [1 ]
Fusco, N. [2 ]
Maggi, F. [3 ]
Pratelli, A. [4 ]
机构
[1] Dipartimento Matemat & Applicaz Architettura, I-50122 Florence, Italy
[2] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[3] Dipartimento Matemat, I-50134 Florence, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
ISOPERIMETRIC INEQUALITY; BOUNDED VARIATION; PRINCIPLE; REARRANGEMENTS; ASYMMETRY; DOMAINS;
D O I
10.4171/JEMS/176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quantitative version of the sharp Sobolev inequality in W(1, p)(R(n)), 1 < p < n, is established with a remainder term involving the distance from the family of extremals.
引用
收藏
页码:1105 / 1139
页数:35
相关论文
共 26 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Aubin T., 1976, J. Differential Geom, V11, P573, DOI [10.4310/jdg/1214433725, DOI 10.4310/JDG/1214433725]
[3]   A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator [J].
Bartsch, T ;
Weth, T ;
Willem, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) :253-268
[4]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[5]  
BLISS GA, 1930, J LOND MATH SOC, V5, P40
[6]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[7]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[8]  
Cianchi A, 2002, ARCH RATION MECH AN, V165, P1, DOI [10.1007/s00205-002-0214-9, 10.1007/S00205-002-0214-9]
[10]   A quantitative Polya-Szego principle [J].
Cianchi, Andrea ;
Esposito, Luca ;
Fusco, Nicola ;
Trombetti, Cristina .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 614 :153-189