Objective Bayesian Analysis for the Student-t Linear Regression

被引:11
|
作者
He, Daojiang [1 ]
Sun, Dongchu [2 ,3 ]
He, Lei [1 ]
机构
[1] Anhui Normal Univ, Dept Stat, Wuhu 241003, Peoples R China
[2] Univ Nebraska, Dept Stat, Lincoln, NE 68583 USA
[3] East China Normal Univ, Sch Stat, Shanghai 200062, Peoples R China
来源
BAYESIAN ANALYSIS | 2021年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
scale mixture of normals; reference prior; independent Jeffreys prior; STOCHASTIC VOLATILITY; REFERENCE PRIORS; MODELS; DISTRIBUTIONS; VARIANCE; FREEDOM;
D O I
10.1214/20-BA1198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, objective Bayesian analysis for the Student-t linear regression model with unknown degrees of freedom is studied. The reference priors under all the possible group orderings for the parameters in the model are derived. The posterior propriety under each reference prior is validated by considering a larger class of priors. Simulation studies are carried out to investigate the frequentist properties of Bayesian estimators based on the reference priors. Finally, the Bayesian approach is applied to two real data sets.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 50 条
  • [1] Theoretical properties of Bayesian Student-t linear regression
    Gagnon, Philippe
    Hayashi, Yoshiko
    STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [2] Objective Bayesian analysis for geostatistical Student-t processes
    Ordonez, Jose A.
    Prates, Marcos O.
    Matos, Larissa A.
    Lachos, Victor H.
    JOURNAL OF SPATIAL SCIENCE, 2024, 69 (01) : 61 - 79
  • [3] Student-t Process Regression with Student-t Likelihood
    Tang, Qingtao
    Niu, Li
    Wang, Yisen
    Dai, Tao
    An, Wangpeng
    Cai, Jianfei
    Xia, Shu-Tao
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2822 - 2828
  • [4] A non-iterative Bayesian sampling algorithm for censored Student-t linear regression models
    Yuan, Haijing
    Yang, Fengkai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) : 3337 - 3355
  • [5] ROBUST BAYESIAN REGRESSION ANALYSIS USING RAMSAY-NOVICK DISTRIBUTED ERRORS WITH STUDENT-T PRIOR
    Kaya, Mutlu
    Cankaya, Emel
    Arslan, Olcay
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 602 - 618
  • [6] Flexible objective Bayesian linear regression with applications in survival analysis
    Rubio, Francisco J.
    Yu, Keming
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (05) : 798 - 810
  • [7] On estimation and influence diagnostics for log-Birnbaum-Saunders Student-t regression models: Full Bayesian analysis
    Cancho, Vicente G.
    Ortega, Edwin M. M.
    Paula, Gilberto A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (09) : 2486 - 2496
  • [8] Inconsistency of estimate of the degree of freedom of multivariate student-t disturbances in linear regression models
    Wang, SG
    Ip, WC
    ECONOMICS LETTERS, 2003, 80 (03) : 383 - 389
  • [9] Student-t censored regression model: properties and inference
    Arellano-Valle, Reinaldo B.
    Castro, Luis M.
    Gonzalez-Farias, Graciela
    Munoz-Gajardo, Karla A.
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (04) : 453 - 473
  • [10] Robust Gaussian Process Regression with a Student-t Likelihood
    Jylanki, Pasi
    Vanhatalo, Jarno
    Vehtari, Aki
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3227 - 3257