A characterization of finite dimensional nilpotent Filippov algebras

被引:12
作者
Darabi, H. [1 ]
Saeedi, F. [1 ]
Eshrati, M. [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Iran
关键词
n-Lie algebra; Multiplier; Nilpotent; LIE-ALGEBRAS; SUPERALGEBRAS; MULTIPLIERS;
D O I
10.1016/j.geomphys.2015.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a nilpotent Filippov (n-Lie) algebra of dimension d and put s(A) = ((d-1)(n)) + n -1 - dim M(A) and t(A) = ((d)(n)) - dim M(A), where M(A) denotes the multiplier of A. The aim of this paper is to classify all nilpotent n-Lie algebras A for which s(A) = 0, 1 or 2, and apply it in order to determine all nilpotent n-Lie algebras A satisfying 0 <= t(A) <= 8. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 50 条